The modelling infrastructure of the Integrated Forecasting System : Recent advances and future challenges

[1]  A. Arakawa,et al.  Unification of the Anelastic and Quasi-Hydrostatic Systems of Equations , 2009 .

[2]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[3]  Joseph B. Klemp,et al.  A Terrain-Following Coordinate with Smoothed Coordinate Surfaces , 2011 .

[4]  P. Smolarkiewicz,et al.  A multiscale anelastic model for meteorological research , 2002 .

[5]  Harold Ritchie,et al.  Application of the Semi-Lagrangian Method to a Spectral Model of the Shallow Water Equations , 1988 .

[6]  R. Klein,et al.  Comments on “A Semihydrostatic Theory of Gravity-Dominated Compressible Flow” , 2014 .

[7]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[8]  Tom Henderson,et al.  AVEC Report: NGGPS Level-1 Benchmarks and Software Evaluation , 2015 .

[9]  D. Durran A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow , 2008, Journal of Fluid Mechanics.

[10]  Guillaume Houzeaux,et al.  A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin , 2015 .

[11]  Masaki Satoh,et al.  Scalable rank-mapping algorithm for an icosahedral grid system on the massive parallel computer with a 3-D torus network , 2014, Parallel Comput..

[12]  Philippe Lopez,et al.  Linearized Physics for Data Assimilation at ECMWF , 2013 .

[13]  P. Rasch,et al.  The Separate Physics and Dynamics Experiment (SPADE) framework for determining resolution awareness: A case study of microphysics , 2013 .

[14]  A. Gassmann,et al.  Towards a new hybrid cumulus parametrization scheme for use in non‐hydrostatic weather prediction models , 2007 .

[15]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[16]  Joe F. Thompson,et al.  Boundary-fitted coordinate systems for numerical solution of partial differential equations—A review , 1982 .

[17]  Mats Hamrud,et al.  A Partitioned Global Address Space implementation of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System , 2015, Int. J. High Perform. Comput. Appl..

[18]  Lars Isaksen,et al.  The IFS Model: A Parallel Production Weather Code , 1995, Parallel Comput..

[19]  Günther Zängl,et al.  Extending the Numerical Stability Limit of Terrain-Following Coordinate Models over Steep Slopes , 2012 .

[20]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[21]  Andreas Müller,et al.  Does high order and dynamic adaptive mesh refinement improve the efficiency of atmospheric simulations , 2014 .

[22]  Alexander E. MacDonald,et al.  A Finite-Volume Icosahedral Shallow-Water Model on a Local Coordinate , 2009 .

[23]  Joanna Szmelter,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..

[24]  S. Malardel Physics/Dynamics Coupling at very high resolution: permitted versus parametrized convection , 2014 .

[25]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales , 2015 .

[26]  Colin J. Cotter,et al.  Mixed finite elements for numerical weather prediction , 2011, J. Comput. Phys..

[27]  Takemasa Miyoshi,et al.  The Non-hydrostatic Icosahedral Atmospheric Model: description and development , 2014, Progress in Earth and Planetary Science.

[28]  Nils Wedi,et al.  Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO , 2006 .

[29]  Zhao Zhang,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2015, J. Comput. Phys..

[30]  B. Hoskins,et al.  Believable scales and parameterizations in a spectral transform model , 1997 .

[31]  George Mozdzynski A NEW PARTITIONING APPROACH FOR ECMWF'S INTEGRATED FORECASTING SYSTEM (IFS) , 2007 .

[32]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .

[33]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013 .

[34]  S. Freitas,et al.  A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling , 2013 .

[35]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[36]  Song‐You Hong,et al.  A Double Fourier Series (DFS) Dynamical Core in a Global Atmospheric Model with Full Physics , 2013 .

[37]  L. Margolin,et al.  STUDIES IN GEOPHYSICS , 2012 .

[38]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[39]  A. Arakawa,et al.  A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I , 2013 .

[40]  Pierre Bénard,et al.  Stability of Leapfrog Constant-Coefficients Semi-Implicit Schemes for the Fully Elastic System of Euler Equations: Case with Orography , 2005 .

[41]  D. Lüthi,et al.  A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .

[42]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[43]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[44]  Michail Diamantakis,et al.  Global mass fixer algorithms for conservative tracer transport in the ECMWF model , 2014 .

[45]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[46]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .

[47]  Piotr K. Smolarkiewicz,et al.  Building resolving large-eddy simulations and comparison with wind tunnel experiments , 2007, J. Comput. Phys..

[48]  W. Rider,et al.  Verification , Validation and Uncertainty Quantification Workflow in CASL , 2011 .

[49]  Adrian Simmons,et al.  Use of Reduced Gaussian Grids in Spectral Models , 1991 .

[50]  Philippe Courtier,et al.  A pole problem in the reduced Gaussian grid , 1994 .

[51]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[52]  Vivian Lee,et al.  The Canadian Global Environmental Multiscale model on the Yin‐Yang grid system , 2011 .

[53]  Tobias Gysi,et al.  Towards a performance portable, architecture agnostic implementation strategy for weather and climate models , 2014, Supercomput. Front. Innov..

[54]  Paul Charbonneau,et al.  The Monge-Ampère trajectory correction for semi-Lagrangian schemes , 2014, J. Comput. Phys..

[55]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[56]  L. Margolin,et al.  On balanced approximations for time integration of multiple time scale systems , 2003 .

[57]  N. Phillips,et al.  Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .

[58]  S. Orszag Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation , 1970 .

[59]  L. Gérard,et al.  An integrated package for subgrid convection, clouds and precipitation compatible with meso‐gamma scales , 2007 .

[60]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[61]  Joanna Szmelter,et al.  An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..

[62]  Terry Davies,et al.  Validity of anelastic and other equation sets as inferred from normal‐mode analysis , 2003 .

[63]  Pierre Bénard,et al.  Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system , 1995 .

[64]  Karim Yessad,et al.  The nonhydrostatic global IFS / ARPEGE : model formulation and testing , 2009 .

[65]  N. Wood,et al.  Bridging the (Knowledge) Gap between Physics and Dynamics , 2016 .

[66]  Karim Yessad,et al.  The hydrostatic and nonhydrostatic global model IFS / ARPEGE : deep-layer model formulation and testing , 2012 .

[67]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[68]  Paul A. Ullrich,et al.  A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..

[69]  D. Durran Improving the Anelastic Approximation , 1989 .

[70]  R. Klein Asymptotics, structure, and integration of sound-proof atmospheric flow equations , 2009 .

[71]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[72]  Sylvie Malardel,et al.  An alternative cell‐averaged departure point reconstruction for pointwise semi‐Lagrangian transport schemes , 2015 .

[73]  N. Wedi,et al.  Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Jürgen Steppeler,et al.  Nonhydrostatic Atmospheric Modeling using az-Coordinate Representation , 2002 .

[75]  Zavisa Janjic,et al.  Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 Dynamics , 2012 .

[76]  Christopher J. Roy,et al.  A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .

[77]  Piotr K. Smolarkiewicz,et al.  On physical realizability and uncertainty of numerical solutions , 2005 .

[78]  M. Zerroukat,et al.  A three‐dimensional monotone and conservative semi‐Lagrangian scheme (SLICE‐3D) for transport problems , 2012 .

[79]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[80]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[81]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .