Constitutive modelling of shape memory alloys and upscaling of deformable porous media

Constitutive Modelling of Shape Memory Alloys and Upscaling of Deformable Porous Media. (May 2005) Petar Angelov Popov, Dipl. Sofia University ”St. Kliment Ohridski”, Bulgaria Chair of Advisory Committee: Dr. Dimitris C. Lagoudas Shape Memory Alloys (SMAs) are metal alloys which are capable of changing their crystallographic structure as a result of externally applied mechanical or thermal loading. This work is a systematic effort to develop a robust, thermodynamics based, 3-D constitutive model for SMAs with special features, dictated by new experimental observations. The new rate independent model accounts in a unified manner for the stress/thermally induced austenite to oriented martensite phase transformation, the thermally induced austenite to self-accommodated martensite phase transformation as well as the reorientation of self-accommodated martensite under applied stress. The model is implemented numerically in 3-D with the help of return-mapping algorithms. Numerical examples, demonstrating the capabilities of the model are also presented. Further, the stationary Fluid-Structure Interaction (FSI) problem is formulated in terms of incompressible Newtonian fluid and a deformable solid. A numerical method is presented for its solution and a numerical implementation is developed. It is used to verify an existing asymptotic solution to the FSI problem in a simple channel geometry. The SMA model is also used in conjunction with the fluid-structure solver to simulate the behavior of SMA based filtering and flow regulating devices. The work also includes a numerical study of wave propagation in SMA rods. An SMA body subjected to external dynamic loading will experience large inelastic deformations that will propagate through the body as phase transformation and/or

[1]  J. K. Knowles,et al.  Impact–induced phase transitions in thermoelastic solids , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[4]  Dimitris C. Lagoudas,et al.  Pseudoelastic SMA Spring Elements for Passive Vibration Isolation: Part II – Simulations and Experimental Correlations , 2004 .

[5]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[6]  K. Tanaka,et al.  A computational micromechanics study on variant-coalescence in a Cu-Al-Ni shape memory alloy , 1995 .

[7]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[8]  R. Lammering,et al.  Finite Element Analysis of the Behavior of Shape Memory Alloys and their Applications. , 1993 .

[9]  Panayiotis Papadopoulos,et al.  Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape‐memory alloys , 2004 .

[10]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[11]  F. Falk,et al.  Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data , 1989 .

[12]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[13]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[14]  C. M. Wayman,et al.  Characteristic temperatures and other properties of thermoelastic martensites , 1974 .

[15]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[16]  Herbert Kolsky,et al.  Stress Waves in Solids , 2003 .

[17]  H. Sakamoto Distinction between Thermal and Stress-Induced Martensitic Transformations and Inhomogeneity in Internal Stress , 2002 .

[18]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[19]  R. J. Clifton,et al.  Pressure-shear impact-induced phase transformations in Cu-14.44Al-4.19Ni single crystals , 1995, Other Conferences.

[20]  Z. Nishiyama,et al.  On the martensitic transformations. , 1960 .

[21]  Dimitris C. Lagoudas,et al.  Pseudoelastic SMA Spring Elements for Passive Vibration Isolation: Part I – Modeling , 2004 .

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[24]  Eduard Oberaigner,et al.  TRANSFORMATION INDUCED PLASTICITY REVISED: AN UPDATED FORMULATION , 1998 .

[25]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[26]  Dimitris C. Lagoudas,et al.  Dynamic loading of polycrystalline shape memory alloy rods , 2003 .

[27]  J. Rice,et al.  PARADOXES IN THE APPLICATION OF THERMODYNAMICS TO STRAINED SOLIDS. , 1969 .

[28]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[29]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[30]  W. B. Cross,et al.  Nitinol characterization study , 1969 .

[31]  E. Schnack,et al.  Macroscopic Modeling of Shape Memory Alloys Under Non-Proportional Thermo-Mechanical Loadings , 2002 .

[32]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[33]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[34]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[35]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[36]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[37]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[38]  Chiang C. Mei,et al.  Re-examination of the equations of poroelasticity , 1997 .

[39]  C. M. Jackson,et al.  55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110 , 1972 .

[40]  Shigenori Kobayashi,et al.  Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys , 1986 .

[41]  J. Bell Propagation of Large Amplitude Waves in Annealed Aluminum , 1960 .

[42]  Dimitris C. Lagoudas,et al.  Impact induced phase transformation in shape memory alloys , 2000 .

[43]  S. Bodner,et al.  AN ANALYSIS OF LONGITUDINAL ELASTIC-PLASTIC PULSE PROPAGATION. , 1966 .

[44]  C. Lexcellent,et al.  RL-models of pseudoelasticity and their specification for some shape memory solids , 1994 .

[45]  Dimitris C. Lagoudas,et al.  On the Correspondence between Micromechanical Models for Isothermal Pseudoelastic Response of Shape Memory Alloys and the Preisach Model for Hysteresis , 1997 .

[46]  C. M. Wayman,et al.  Superelasticity effects and stress-induced martensitic transformations in CuAlNi alloys , 1976 .

[47]  H. Kolsky,et al.  Experimental studies in plastic wave propagation , 1962 .

[48]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[49]  Marc Regelbrugge,et al.  Shape-memory alloy isolators for vibration suppression in space applications , 1995 .

[50]  Yohannes Ketema,et al.  Shape Memory Alloys for Passive Vibration Damping , 1998 .

[51]  P. Pinsky,et al.  Global analysis methods for the solution of the elastoplastic and viscoplastic dynamic problems , 1982 .

[52]  Gene H. Golub,et al.  Matrix computations , 1983 .

[53]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[54]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[55]  Hisaaki Tobushi,et al.  Analysis of thermomechanical behavior of shape memory alloys , 1992 .

[56]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[57]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[58]  Jordi Ortín,et al.  Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations , 1988 .

[59]  Christian Miehe,et al.  A multi-variant martensitic phase transformation model: formulation and numerical implementation , 2001 .

[60]  M. Berveiller,et al.  Comportement élastoplastique des aciers lors de la mise en forme: théorie micromécanique, simulations numériques et résultats expérimentaux , 1994 .

[61]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[62]  Oleg Iliev,et al.  Fluid structure interaction problems in deformable porous media: Toward permeability of deformable porous media , 2004 .

[63]  K. Hwang,et al.  A micromechanics constitutive model of transformation plasticity with shear and dilatation effect , 1991 .

[64]  Zdenek P. Bazant,et al.  MICROPLANE MODEL FOR STRAIN-CONTROLLED INELASTIC BEHAVIOUR. , 1984 .

[65]  V. A. Barker,et al.  Finite element solution of boundary value problems , 1984 .

[66]  C. M. Wayman,et al.  The shape memory mechanism in 18R martensitic alloys , 1980 .

[67]  T. Roubíček Models of Microstructure Evolution in Shape Memory Alloys , 2004 .

[68]  Ferdinando Auricchio,et al.  A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model , 2001 .

[69]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[70]  T. Pence On the emergence and propagation of a phase boundary in an elastic bar with a suddenly applied end load , 1986 .

[71]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[72]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[73]  J. L. Mcnichols,et al.  Thermodynamics of Nitinol , 1987 .

[74]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[75]  M. Achenbach A model for an alloy with shape memory , 1989 .

[76]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[77]  Huseyin Sehitoglu,et al.  Transformation and detwinning induced electrical resistance variations in NiTiCu , 2003 .

[78]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[79]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[80]  George J. Weng,et al.  A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals , 1998 .

[81]  Investigation of the damping behavior of a vibrating shape memory alloy rod using a micromechanical model , 1996 .

[82]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs , 2004 .

[83]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[84]  D. M. Tracey,et al.  Computational fracture mechanics , 1973 .

[85]  L. Brinson,et al.  A Simplified Multivariant SMA Model Based on Invariant Plane Nature of Martensitic Transformation , 2002 .

[86]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[87]  Dimitris C. Lagoudas,et al.  Thermomechanical Characterization of SMA Actuators Under Cyclic Loading , 2003 .

[88]  A. Planes,et al.  ATOMIC ORDERING AND MARTENSITIC TRANSITION IN A Cu-Zn-Al SHAPE MEMORY ALLOY , 1991 .

[89]  Marcel Berveiller,et al.  Potentiel pseudoelastique et plasticite de transformation martensitique dans les monoet polycristaux metalliques , 1987 .

[90]  E. P. Popov,et al.  Accuracy and stability of integration algorithms for elastoplastic constitutive relations , 1985 .

[91]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[92]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials. Part II: inelastic response , 1998 .

[93]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[94]  James H. Bramble,et al.  The analysis of multigrid methods , 2000 .

[95]  L. Brinson,et al.  Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach , 1997 .

[96]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[97]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[98]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[99]  Juan Carlos Jimenez-Victory Dynamic analysis of impact induced phase transformation in Shape Memory Alloys using numerical techniques , 1999 .

[100]  A. Bekker Impact induced propagation of phase transformation in a shape memory alloy rod , 2002 .

[101]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[102]  E. Aernoudt,et al.  The Crystallography of the Martensitic Transformation of B.C.C. into 9R: a Generalized Mathematical Model , 1978 .

[103]  Pol Duwez,et al.  The Propagation of Plastic Deformation in Solids , 1950 .

[104]  Christian Lexcellent,et al.  Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams , 2001 .

[105]  C Lexcellent,et al.  Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling , 2002 .

[106]  Manfred Kohl,et al.  SMA microgripper system , 2002 .

[107]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[108]  C. Lexcellent,et al.  Thermodynamics of isotropic pseudoelasticity in shape memory alloys , 1998 .

[109]  James K. Knowles,et al.  Dynamics of propagating phase boundaries: adiabatic theory for thermoelastic solids , 1994 .

[110]  E. J. Graesser Effect of intrinsic damping on vibration transmissibility of nickel-titanium shape memory alloy springs , 1993 .

[111]  J. Bell Experimental study of dynamic plasticity at elevated temperatures , 1962 .

[112]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .

[113]  James G. Boyd,et al.  Micromechanics of Active Composites With SMA Fibers , 1994 .

[114]  Perry H Leo,et al.  The use of shape memory alloys for passive structural damping , 1995 .

[115]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[116]  Sanjay Govindjee,et al.  A computational model for shape memory alloys , 2000 .

[117]  Dimitris C. Lagoudas,et al.  Residual deformation of active structures with SMA actuators , 1999 .

[118]  Arne. Olander AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS , 1932 .

[119]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[120]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[121]  Z. C. Feng,et al.  Dynamics of a Mechanical System with a Shape Memory Alloy Bar , 1996 .

[122]  C. Liang,et al.  A multi-dimensional constitutive model for shape memory alloys , 1992 .

[123]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[124]  Radim Blaheta,et al.  Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems , 1994, Numer. Linear Algebra Appl..

[125]  R. Christensen,et al.  Mechanics of composite materials , 1979 .

[126]  P. Wollants,et al.  A Thermodynamic Analysis of the Stress-Induced Martensitic Transformation in a Single Crystal , 1979 .

[127]  James K. Knowles,et al.  Dynamics of propagating phase boundaries: Thermoelastic solids with heat conduction , 1994 .

[128]  J. Schrooten,et al.  Transformational behaviour of constrained shape memory alloys , 2002 .

[129]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[130]  G. B. Olson,et al.  Stress-assisted isothermal martensitic transformation: Application to TRIP steels , 1982 .

[131]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[132]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[133]  F. Fischer,et al.  A mesoscale study on the thermodynamic effect of stress on martensitic transformation , 1995 .

[134]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[135]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[136]  E. J. Graesser,et al.  Shape‐Memory Alloys as New Materials for Aseismic Isolation , 1991 .

[137]  Gn Dayananda,et al.  Recovery stress generation in shape memory Ti50Ni45Cu5 thin wires , 2000 .

[138]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[139]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[140]  Christian Lexcellent,et al.  Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape memory alloys , 2002 .

[141]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[142]  G. Bourbon,et al.  Thermodynamical model of cyclic behaviour of TiNi and CuZnAl shape memory alloys under isothermal undulated tensile tests , 1996 .

[143]  L. E. Malvern,et al.  Compression-impact testing of aluminum at elevated temperatures , 1963 .

[144]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[145]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[146]  Zdeněk P. Bažant,et al.  Three-dimensional constitutive model for shape memory alloys based on microplane model , 2002 .

[147]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[148]  N. Triantafyllidis,et al.  Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity , 1993 .

[149]  E. Patoor,et al.  THERMOMECHANICAL CONSTITUTIVE EQUATIONS FOR SHAPE MEMORY ALLOYS , 1991 .

[150]  Owe Axelsson,et al.  Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..

[151]  Kaspar Willam,et al.  Numerical solution of transient nonlinear problems , 1979 .

[152]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[153]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[154]  Jordi Ortín,et al.  Thermodynamics of Thermoelastic Martensitic Transformations , 1989 .

[155]  Sanjay Govindjee,et al.  Non‐linear B‐stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity , 1991 .