Operator Algebras in Quantum Computation

In this master thesis, I discuss how the theory of operator algebras, also called operator theory, can be applied in quantum computer science.

[1]  Bart Jacobs,et al.  The Expectation Monad in Quantum Foundations , 2011, ArXiv.

[2]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[3]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[4]  Kazuyuki Saitô,et al.  On classifying monotone complete algebras of operators , 2007 .

[5]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[6]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[7]  Richard V. Kadison,et al.  OPERATOR ALGEBRAS WITH A FAITHFUL WEAKLY-CLOSED REPRESENTATION , 1956 .

[8]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[9]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[10]  Simon J. Gay,et al.  Quantum Programming Languages Survey and Bibliography , 2006 .

[11]  Jean-Yves Girard,et al.  Geometry of Interaction V: Logic in the hyperfinite factor , 2011, Theor. Comput. Sci..

[12]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[13]  Nicolaas P. Landsman,et al.  Mathematical Topics Between Classical and Quantum Mechanics , 1998 .

[14]  S. Sherman,et al.  Order in Operator Algebras , 1951 .

[15]  S. Wassermann,et al.  C*‐ALGEBRAS BY EXAMPLE (Fields Institute Monographs 6) , 1998 .

[16]  境 正一郎 C[*]-algebras and W[*]-algebras , 1973 .

[17]  J. Dixmier,et al.  Von Neumann Algebras , 1981 .

[18]  Richard V. Kadison,et al.  Order properties of bounded self-adjoint operators , 1951 .

[19]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[20]  Bart Jacobs,et al.  Convexity, Duality and Effects , 2010, IFIP TCS.

[21]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[22]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[23]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[24]  H. Halberstam,et al.  North-Holland Mathematical Library , 2005 .

[25]  J. Dixmier Les C*-algèbres et leurs représentations .. , 1964 .

[26]  Roberto M. Amadio,et al.  Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .

[27]  Bart Jacobs,et al.  New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic , 2012, Log. Methods Comput. Sci..

[28]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[29]  P. Panangaden Probabilistic Relations , 1998 .

[30]  K. Davidson C*-algebras by example , 1996 .

[31]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[32]  Edsger W. Dijkstra,et al.  Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.

[33]  John von Neumann,et al.  Rings of operators , 1961 .

[34]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[35]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[36]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.