Modelling the large-scale redshift-space 3-point correlation function of galaxies

Author(s): Slepian, Z; Eisenstein, DJ | Abstract: © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adoptedm and bias values, the rescaling is a factor of ∼1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.

[1]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[2]  Christopher Hirata,et al.  Relative velocity of dark matter and baryonic fluids and the formation of the first structures , 2010, 1005.2416.

[3]  B. Warner,et al.  Observations of Rapid Blue Variables–III HL TAU-76 , 1972 .

[4]  Cornelius Rampf,et al.  Lagrangian perturbations and the matter bispectrum II: the resummed one-loop correction to the matter bispectrum , 2012, 1203.4261.

[5]  D. Eisenstein,et al.  Computing the Three-Point Correlation Function of Galaxies in $\mathcal{O}(N^2)$ Time , 2015, 1506.02040.

[6]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[7]  F. Castander,et al.  Clustering of luminous red galaxies – III. Baryon acoustic peak in the three-point correlation , 2008 .

[8]  P. Peebles,et al.  On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe , 1977 .

[9]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[10]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[11]  Eric V. Linder Baryon oscillations as a cosmological probe , 2003 .

[12]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[13]  J. Blazek,et al.  Streaming Velocities and the Baryon Acoustic Oscillation Scale. , 2015, Physical review letters.

[14]  L. Verde,et al.  An improved fitting formula for the dark matter bispectrum , 2011, 1111.4477.

[15]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[16]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[17]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[18]  O. Lahav,et al.  The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures , 2009, 0903.5451.

[19]  P. Mcdonald,et al.  Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.

[20]  D. Eisenstein,et al.  Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms , 2015, 1506.04746.

[21]  The large-scale 3-point correlation function of the SDSS BOSS DR12 CMASS galaxies , 2015, 1607.06098.

[22]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12 , 2015, 1509.06371.

[23]  D. Eisenstein,et al.  On the signature of the baryon–dark matter relative velocity in the two- and three-point galaxy correlation functions , 2014, 1411.4052.

[24]  Joshua A. Frieman,et al.  The Bispectrum as a Signature of Gravitational Instability in Redshift Space , 1998, astro-ph/9808305.

[25]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space , 2016, 1607.03149.

[26]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[27]  Sebastian Pueblas,et al.  Cosmology and the Bispectrum , 2006 .

[28]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[29]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[30]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[31]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[32]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[33]  U. Seljak,et al.  Large-scale BAO signatures of the smallest galaxies , 2010, 1009.4704.

[34]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[35]  D. Eisenstein,et al.  A simple analytic treatment of linear growth of structure with baryon acoustic oscillations , 2015, 1509.08199.

[36]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[37]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[38]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[39]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[40]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[41]  Fry,et al.  Halo Profiles and the Nonlinear Two- and Three-Point Correlation Functions of Cosmological Mass Density. , 2000, The Astrophysical journal.

[42]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[43]  Berkeley,et al.  Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements , 2011, 1105.3732.

[44]  R. Smith,et al.  Analytic model for the bispectrum of galaxies in redshift space , 2007, 0712.0017.

[45]  Donald Hamilton,et al.  The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .

[46]  P. J. E. Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. IX. The four-point galaxy correlation function. , 1978 .

[47]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.

[48]  W. Percival,et al.  Dark matter and halo bispectrum in redshift space: theory and applications , 2014, 1407.1836.

[49]  R. Mehrem,et al.  The plane wave expansion, infinite integrals and identities involving spherical Bessel functions , 2009, Appl. Math. Comput..

[50]  Donald P. Schneider,et al.  The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.

[51]  I. Szapudi Three-Point Statistics from a New Perspective , 2004, astro-ph/0404476.