Computational modeling of healing: an application of the material force method

The basic aim of the present contribution is the qualitative simulation of healing phenomena typically encountered in hard and soft tissue mechanics. The mechanical framework is provided by the theory of open system thermodynamics, which will be formulated in the spatial as well as in the material motion context. While the former typically aims at deriving the density and the spatial motion deformation field in response to given spatial forces, the latter will be applied to determine the material forces in response to a given density and material deformation field. We derive a general computational framework within the finite element context that will serve to evaluate both the spatial and the material motion problem. However, once the spatial motion problem has been solved, the solution of the material motion problem represents a mere post-processing step and is thus extremely cheap from a computational point of view. The underlying algorithm will be elaborated systematically by means of two prototype geometries subjected to three different representative loading scenarios, tension, torsion, and bending. Particular focus will be dedicated to the discussion of the additional information provided by the material force method. Since the discrete material node point forces typically point in the direction of potential material deposition, they can be interpreted as a driving force for the healing mechanism.

[1]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[2]  A. Katchalsky,et al.  Nonequilibrium Thermodynamics in Biophysics , 1965 .

[3]  H Weinans,et al.  Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. , 1994, Journal of biomechanical engineering.

[4]  P A Hill,et al.  Bone Remodelling , 1998, British journal of orthodontics.

[5]  Paul Steinmann,et al.  On spatial and material settings of thermo-hyperelastodynamics for open systems , 2003 .

[6]  L. Taber Biomechanics of Growth, Remodeling, and Morphogenesis , 1995 .

[7]  Jay D. Humphrey,et al.  A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES , 2002 .

[8]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .

[9]  P. Steinmann,et al.  Application of the material force method to isotropic continuum damage , 2003 .

[10]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[11]  Paul Steinmann,et al.  Mass– and volume–specific views on thermodynamics for open systems , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[13]  J. Humphrey Cardiovascular solid mechanics , 2002 .

[14]  E Y Chao,et al.  A survey of finite element analysis in orthopedic biomechanics: the first decade. , 1983, Journal of biomechanics.

[15]  J. Kestin A Course In Thermodynamics , 1979 .

[16]  Robert B. Salter,et al.  Skeletal Function and Form. Mechanobiology of Skeletal Development, Aging, and Regeneration. , 2001 .

[17]  Paul Steinmann,et al.  Studies in elastic fracture mechanics based on the material force method , 2003 .

[18]  Paul Steinmann,et al.  Application of the material force method to thermo-hyperelasticity , 2004 .

[19]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[20]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting , 2001 .

[21]  D. Carter,et al.  Relationships between loading history and femoral cancellous bone architecture. , 1989, Journal of biomechanics.

[22]  F. Pauwels,et al.  Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates , 1965 .

[23]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[24]  K. Garikipati,et al.  Material Forces in the Context of Biotissue Remodelling , 2003, q-bio/0312002.

[25]  Paul Steinmann,et al.  Theory and numerics of geometrically non‐linear open system mechanics , 2003 .

[26]  S. Cowin,et al.  Bone remodeling I: theory of adaptive elasticity , 1976 .

[27]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  Dietmar Gross,et al.  On configurational forces in the context of the finite element method , 2002 .

[29]  S. Cowin,et al.  Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. , 1994 .

[30]  Gérard A. Maugin,et al.  The thermomechanics of nonlinear irreversible behaviors : an introduction , 1999 .

[31]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[32]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[33]  Paul Steinmann,et al.  Material forces in open system mechanics , 2004 .

[34]  D. Ambrosi,et al.  On the mechanics of a growing tumor , 2002 .

[35]  H. Grootenboer,et al.  The behavior of adaptive bone-remodeling simulation models. , 1992, Journal of biomechanics.

[36]  H. Grootenboer,et al.  Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.

[37]  C. Gans,et al.  Biomechanics: Motion, Flow, Stress, and Growth , 1990 .

[38]  Marcelo Epstein,et al.  Thermomechanics of volumetric growth in uniform bodies , 2000 .

[39]  S. D. Groot,et al.  Thermodynamics of Irreversible Processes , 2018, Principles of Thermodynamics.

[40]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[41]  M. Sato [Mechanical properties of living tissues]. , 1986, Iyo denshi to seitai kogaku. Japanese journal of medical electronics and biological engineering.

[42]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[43]  Y. C. Fung,et al.  BIOMECHANICS OF INJURY AND HEALING , 2001 .

[44]  Vlado A. Lubarda,et al.  On the mechanics of solids with a growing mass , 2002 .

[45]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[46]  Gérard A. Maugin,et al.  Material Forces: Concepts and Applications , 1995 .

[47]  Timothy P. Harrigan,et al.  Optimality conditions for finite element simulation of adaptive bone remodeling , 1992 .

[48]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[49]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[50]  Paul Steinmann,et al.  On spatial and material settings of hyperelastodynamics , 2002 .

[51]  Timothy P. Harrigan,et al.  Finite element simulation of adaptive bone remodelling: A stability criterion and a time stepping method , 1993 .

[52]  Paul Steinmann,et al.  Computational Modeling of Growth , 2022 .

[53]  Paul Steinmann,et al.  On Spatial and Material Settings of Thermo-Hyperelastodynamics , 2002 .

[54]  Gerhard A. Holzapfel,et al.  A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation , 2002 .

[55]  Paul Steinmann,et al.  On spatial and material settings of hyperelastostatic crystal defects , 2002 .

[56]  Jay D. Humphrey,et al.  Cardiovascular soft tissue mechanics , 2004 .

[57]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  G S Beaupré,et al.  An approach for time‐dependent bone modeling and remodeling—theoretical development , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[59]  S C Cowin,et al.  Strain or deformation rate dependent finite growth in soft tissues. , 1996, Journal of biomechanics.