Nonperturbative lorentzian path integral for gravity
暂无分享,去创建一个
Ambjorn | Jurkiewicz | Loll
[1] M. Carfora,et al. Holonomy and entropy estimates for dynamically triangulated manifolds , 1995 .
[2] Konstantinos N. Anagnostopoulos,et al. A new perspective on matter coupling in two-dimensional quantum gravity , 1999 .
[3] T. Regge. General relativity without coordinates , 1961 .
[4] J. Ambjorn,et al. Crumpled triangulations and critical points in 4D simplicial quantum gravity , 1998 .
[5] R. Loll,et al. Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .
[6] J. Jurkiewicz,et al. Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results , 2000 .
[7] Z. Burda,et al. Condensation in the Backgammon model , 1997 .
[8] J. Jurkiewicz,et al. Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.
[9] Z. Burda,et al. Appearance of mother universe and singular vertices in random geometries , 1997 .
[10] I. Montvay,et al. Quantum Fields on a Lattice: Introduction , 1994 .
[11] Davide Gabrielli. Polymeric phase of simplicial quantum gravity , 1998 .
[12] R. Loll,et al. A new perspective on matter coupling in two-dimensional gravity. , 1999, hep-th/9904012.
[13] R. Loll,et al. Crossing the c=1 barrier in 2d Lorentzian quantum gravity , 1999 .
[14] Mauro Carfora,et al. Entropy estimates for Simplicial Quantum Gravity , 1995 .
[15] R. Loll,et al. Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.
[16] J. Ambjorn,et al. The geometry of dynamical triangulations , 1996, hep-th/9612069.