Nonperturbative lorentzian path integral for gravity

We construct a well-defined regularized path integral for Lorentzian quantum gravity in terms of dynamically triangulated causal space-times. Each Lorentzian geometry and its action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time and, for finite lattice volume, the associated transfer matrix is self-adjoint, bounded, and strictly positive. The degenerate geometric phases found in dynamically triangulated Euclidean gravity are not present.

[1]  M. Carfora,et al.  Holonomy and entropy estimates for dynamically triangulated manifolds , 1995 .

[2]  Konstantinos N. Anagnostopoulos,et al.  A new perspective on matter coupling in two-dimensional quantum gravity , 1999 .

[3]  T. Regge General relativity without coordinates , 1961 .

[4]  J. Ambjorn,et al.  Crumpled triangulations and critical points in 4D simplicial quantum gravity , 1998 .

[5]  R. Loll,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .

[6]  J. Jurkiewicz,et al.  Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results , 2000 .

[7]  Z. Burda,et al.  Condensation in the Backgammon model , 1997 .

[8]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[9]  Z. Burda,et al.  Appearance of mother universe and singular vertices in random geometries , 1997 .

[10]  I. Montvay,et al.  Quantum Fields on a Lattice: Introduction , 1994 .

[11]  Davide Gabrielli Polymeric phase of simplicial quantum gravity , 1998 .

[12]  R. Loll,et al.  A new perspective on matter coupling in two-dimensional gravity. , 1999, hep-th/9904012.

[13]  R. Loll,et al.  Crossing the c=1 barrier in 2d Lorentzian quantum gravity , 1999 .

[14]  Mauro Carfora,et al.  Entropy estimates for Simplicial Quantum Gravity , 1995 .

[15]  R. Loll,et al.  Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.

[16]  J. Ambjorn,et al.  The geometry of dynamical triangulations , 1996, hep-th/9612069.