Trophic and tectonic limits to the global increase of marine invertebrate diversity

[1]  S. Peters,et al.  Plate tectonic regulation of global marine animal diversity , 2017, Proceedings of the National Academy of Sciences.

[2]  T. Lenton,et al.  A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic , 2016 .

[3]  R. Müller,et al.  Global plate boundary evolution and kinematics since the late Paleozoic , 2016 .

[4]  M. Wills,et al.  Global cooling as a driver of diversification in a major marine clade , 2016, Nature Communications.

[5]  S. Peters,et al.  Delayed fungal evolution did not cause the Paleozoic peak in coal production , 2016, Proceedings of the National Academy of Sciences.

[6]  P. Harries,et al.  The Effect of Taxonomic Corrections on Phanerozoic Generic Richness Trends in Marine Bivalves with a Discussion on the Clade's Overall History , 2015, Paleobiology.

[7]  D. Rabosky,et al.  Species richness at continental scales is dominated by ecological limits. , 2015, The American naturalist.

[8]  R. Müller,et al.  Tectonic speed limits from plate kinematic reconstructions , 2015 .

[9]  C. Vérard,et al.  Geodynamic evolution of the Earth over the Phanerozoic: Plate tectonic activity and palaeoclimatic indicators , 2015 .

[10]  J. Alroy Accurate and precise estimates of origination and extinction rates , 2014, Paleobiology.

[11]  W. Allmon,et al.  Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences , 2014, Paleobiology.

[12]  George Sugihara,et al.  Detecting Causality in Complex Ecosystems , 2012, Science.

[13]  S. Peters,et al.  Phanerozoic Earth System Evolution and Marine Biodiversity , 2011, Science.

[14]  K. Miller,et al.  A 180-Million-Year Record of Sea Level and Ice Volume Variations from Continental Margin and Deep-Sea Isotopic Records , 2011 .

[15]  Michael J Benton,et al.  The origins of modern biodiversity on land , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  John Alroy,et al.  Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification , 2010 .

[17]  J. Alroy The Shifting Balance of Diversity Among Major Marine Animal Groups , 2010, Science.

[18]  P. Harries,et al.  Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon , 2010 .

[19]  W. Kiessling Evolution: Promoting marine origination , 2010 .

[20]  Arnold I. Miller,et al.  Phanerozoic trends in the global geographic disparity of marine biotas , 2009, Paleobiology.

[21]  R. Berner Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model , 2009, American Journal of Science.

[22]  Michael J Benton,et al.  The Red Queen and the Court Jester: Species Diversity and the Role of Biotic and Abiotic Factors Through Time , 2009, Science.

[23]  B. Haq,et al.  A Chronology of Paleozoic Sea-Level Changes , 2008, Science.

[24]  Karen M. Layou,et al.  Phanerozoic Trends in the Global Diversity of Marine Invertebrates , 2008, Science.

[25]  Walter R. Roest,et al.  Age, spreading rates, and spreading asymmetry of the world's ocean crust , 2008 .

[26]  R. Müller,et al.  Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics , 2008, Science.

[27]  D. Erwin,et al.  AUTECOLOGY AND THE FILLING OF ECOSPACE: KEY METAZOAN RADIATIONS , 2007 .

[28]  Robert A. Berner,et al.  GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 , 2006 .

[29]  S. Peters Geologic constraints on the macroevolutionary history of marine animals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Chuanmin Hu,et al.  The importance of continental margins in the global carbon cycle , 2005 .

[31]  Timothy M. Lenton,et al.  COPSE: a new model of biogeochemical cycling over Phanerozoic time , 2004 .

[32]  R. Berner The long-term carbon cycle, fossil fuels and atmospheric composition , 2003, Nature.

[33]  Henry D I Abarbanel,et al.  False neighbors and false strands: a reliable minimum embedding dimension algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  D. Rowley Rate of plate creation and destruction: 180 Ma to present , 2002 .

[35]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[36]  L. Ivany,et al.  Continental Drift and Phanerozoic Carbonate Accumulation in Shallow‐Shelf and Deep‐Marine Settings , 2002, The Journal of Geology.

[37]  Philip M. Novack-Gottshall,et al.  Effects of sampling standardization on estimates of Phanerozoic marine diversification , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Berner Modeling atmospheric O2 over Phanerozoic time , 2001 .

[39]  A. Mcguire,et al.  What is it to be a model? , 2000, HEPAC Health Economics in Prevention and Care.

[40]  Michael J Foote Contingency and Convergence , 1998, Science.

[41]  A. Klaus,et al.  GEOCHEMICAL EVIDENCE FOR A MID-CRETACEOUS SUPERPLUME , 1998 .

[42]  M. Benton Models for the diversification of life. , 1997, Trends in ecology & evolution.

[43]  K. I. Ugland,et al.  Coastal and deep-sea benthic diversities compared , 1997 .

[44]  W. Ebisuzaki A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated , 1997 .

[45]  Ronald E. Martin Secular increase in nutrient levels through the Phanerozoic; implications for productivity, biomass, and diversity of the marine biosphere , 1996 .

[46]  Arnold I. Miller,et al.  Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends , 1996, Paleobiology.

[47]  J. Hedges,et al.  Sedimentary organic matter preservation: an assessment and speculative synthesis , 1995 .

[48]  G. Vermeij Economics, volcanoes, and Phanerozoic revolutions , 1995, Paleobiology.

[49]  R. Bambach Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem , 1993, Paleobiology.

[50]  R. Larson Latest pulse of Earth: Evidence for a mid-Cretaceous superplume , 1991 .

[51]  R. Berner Atmospheric Carbon Dioxide Levels Over Phanerozoic Time , 1990, Science.

[52]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[53]  D. Canfield,et al.  A new model for atmospheric oxygen over Phanerozoic time. , 1989, American journal of science.

[54]  S. Gaffin Ridge Volume Dependence on Seafloor Generation Rate and Inversion Using Long Term Sealevel Change , 1987, American Journal of Science.

[55]  岩生 周一,et al.  Heinrich D.,HOLLAND:The Chemical Evolution of the Atmosphere and Oceans , 1986 .

[56]  G. L. Johnson,et al.  A significant correlation between fluctuations in seafloor spreading rates and evolutionary pulsations , 1986 .

[57]  D. Mclean,et al.  Deccan traps mantle degassing in the terminal Cretaceous marine extinctions , 1985 .

[58]  R. Garrels,et al.  Coupling of the sedimentary sulfur and carbon cycles - an improved model. , 1984 .

[59]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions , 1984, Paleobiology.

[60]  Robert Raiswell,et al.  Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory , 1983 .

[61]  R. Berner Burial of organic carbon and pyrite sulfur in the modern ocean : its geochemical and environmental significance , 1982 .

[62]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[63]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria , 1979, Paleobiology.

[64]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders , 1978, Paleobiology.

[65]  G. Vermeij The Mesozoic marine revolution: evidence from snails, predators and grazers , 1977, Paleobiology.

[66]  D M Raup,et al.  Taxonomic Diversity during the Phanerozoic. , 1972, Science.

[67]  J. W. Valentine,et al.  Plate-tectonic Regulation of Faunal Diversity and Sea Level: a Model , 1970, Nature.

[68]  H. L. Sanders,et al.  Marine Benthic Diversity: A Comparative Study , 1968, The American Naturalist.

[69]  MathewDomeier Plate tectonics in the late Paleozoic , 2014 .

[70]  S. Stanley An Analysis of the History of Marine Animal Diversity , 2007 .

[71]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[72]  Peter G. Bass A New Theory , 2003 .

[73]  Lei Chou,et al.  Interactions of C, N, P and S Biogeochemical Cycles and Global Change: NATO ASI Series I: Global Environmental Change, Vol. 4, 521p. , 1993 .

[74]  L. Kump The Coupling of the Carbon and Sulfur Biogeochemical Cycles Over Phanerozoic Time , 1993 .

[75]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[76]  John C. Briggs,et al.  Biogeography and plate tectonics , 1987 .

[77]  J. W. Valentine,et al.  A provincial model of Phanerozoic marine diversity , 1978, Paleobiology.

[78]  C. R. Deboor,et al.  A practical guide to splines , 1978 .