Polar coding for the Slepian-Wolf problem based on monotone chain rules

We give a polar coding scheme that achieves the full admissible rate region in the Slepian-Wolf problem without time-sharing. The method is based on a source polarization result using monotone chain rule expansions.

[1]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[2]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[3]  R. Urbanke,et al.  Asynchronous Slepian-Wolf coding via source-splitting , 1997, Proceedings of IEEE International Symposium on Information Theory.

[4]  Eren Sasoglu,et al.  Polar codes for the two-user binary-input multiple-access channel , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[5]  Emre Telatar,et al.  MAC polar codes and matroids , 2010, 2010 Information Theory and Applications Workshop (ITA).

[6]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[7]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[9]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[10]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[11]  Eren Sasoglu Polar Coding Theorems for Discrete Systems , 2011 .

[12]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[13]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .