The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys

[1]  Andreas Nieder,et al.  Number detectors spontaneously emerge in a deep neural network designed for visual object recognition , 2019, Science Advances.

[2]  Tao Liu Methodological Issues , 2019, PsycEXTRA Dataset.

[3]  Florian Mormann,et al.  Single Neurons in the Human Brain Encode Numbers , 2018, Neuron.

[4]  Jonas Kubilius,et al.  Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? , 2018, bioRxiv.

[5]  Aran Nayebi,et al.  CORnet: Modeling the Neural Mechanisms of Core Object Recognition , 2018, bioRxiv.

[6]  James J. DiCarlo,et al.  Reversible Inactivation of Different Millimeter-Scale Regions of Primate IT Results in Different Patterns of Core Object Recognition Deficits , 2018, Neuron.

[7]  James J. DiCarlo,et al.  Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior , 2018, Nature Neuroscience.

[8]  Stanislas Dehaene,et al.  The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition , 2018, PLoS biology.

[9]  James J DiCarlo,et al.  Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks , 2018, The Journal of Neuroscience.

[10]  Jonathan Grainger,et al.  A Vision of Reading , 2016, Trends in Cognitive Sciences.

[11]  Ha Hong,et al.  Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance , 2015, The Journal of Neuroscience.

[12]  J. DiCarlo,et al.  Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination , 2015, Proceedings of the National Academy of Sciences.

[13]  Régine Kolinsky,et al.  Illiterate to literate: behavioural and cerebral changes induced by reading acquisition , 2015, Nature Reviews Neuroscience.

[14]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[15]  Justin L. Vincent,et al.  Novel domain formation reveals proto-architecture in inferotemporal cortex , 2014, Nature Neuroscience.

[16]  J. DiCarlo,et al.  Comparison of Object Recognition Behavior in Human and Monkey , 2014, The Journal of Neuroscience.

[17]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[18]  Brian D. Mills,et al.  Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology , 2014, The Journal of Neuroscience.

[19]  Jonathan Grainger,et al.  Deep Learning of Orthographic Representations in Baboons , 2014, PloS one.

[20]  Pooja Viswanathan,et al.  Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices , 2013, Proceedings of the National Academy of Sciences.

[21]  William Bains,et al.  Comment on “Orthographic Processing in Baboons (Papio papio)” , 2012, Science.

[22]  J. Ziegler,et al.  Orthographic Processing in Baboons (Papio papio) , 2012 .

[23]  M. Livingstone,et al.  Behavioral and Anatomical Consequences of Early versus Late Symbol Training in Macaques , 2012, Neuron.

[24]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[25]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[26]  Gordon E Legge,et al.  Does print size matter for reading? A review of findings from vision science and typography. , 2011, Journal of vision.

[27]  S. Dehaene,et al.  How Learning to Read Changes the Cortical Networks for Vision and Language , 2010, Science.

[28]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[29]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[30]  Colin J Davis,et al.  The spatial coding model of visual word identification. , 2010, Psychological review.

[31]  Stanislas Dehaene,et al.  Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area , 2010, NeuroImage.

[32]  R. Passingham How good is the macaque monkey model of the human brain? , 2009, Current Opinion in Neurobiology.

[33]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[34]  S. Dehaene,et al.  Cultural Recycling of Cortical Maps , 2007, Neuron.

[35]  Qiong Zhang,et al.  The Structures of Letters and Symbols throughout Human History Are Selected to Match Those Found in Objects in Natural Scenes , 2006, The American Naturalist.

[36]  M. Sigman,et al.  Opinion TRENDS in Cognitive Sciences Vol.9 No.7 July 2005 The neural code for written words: a proposal , 2022 .

[37]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[38]  Doris Y. Tsao,et al.  Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex , 2003, The Journal of Neuroscience.

[39]  Kenneth O. Johnson,et al.  Review: Neural Coding and the Basic Law of Psychophysics , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[40]  G. Baylis,et al.  Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal , 2001, Nature Neuroscience.

[41]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[42]  C. Whitney How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review , 2001, Psychonomic bulletin & review.

[43]  C R Olson,et al.  Mirror-image confusion in single neurons of the macaque inferotemporal cortex. , 2000, Science.

[44]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[45]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[46]  J. DiCarlo,et al.  Velocity Invariance of Receptive Field Structure in Somatosensory Cortical Area 3b of the Alert Monkey , 1999, The Journal of Neuroscience.

[47]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[48]  M. Sur,et al.  A map of visual space induced in primary auditory cortex. , 1990, Science.

[49]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[50]  William White,et al.  A Proposal , 2008, Moon, Sun, and Witches.

[51]  J. Cantlon,et al.  Neural Tuning to Numerosity Relates to Perceptual Tuning in 3-6-Year-Old Children. , 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Masae Sato,et al.  Reading in the brain , 2012 .

[53]  J. Ziegler,et al.  [Orthographic processing in baboons]. , 2012, Medecine sciences : M/S.

[54]  A. Wenger,et al.  Reading in the brain , 2010 .

[55]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[56]  David L. Sheinberg,et al.  Visual object recognition. , 1996, Annual review of neuroscience.

[57]  Neil A. Macmillan,et al.  Signal detection theory as data analysis method and psychological decision model , 1993 .

[58]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.