Roadmap Roadmap on optical metamaterials

Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.

[1]  Analogue Gravity in Hyperbolic Metamaterials , 2017 .

[2]  Zubin Jacob,et al.  Super-Coulombic atom–atom interactions in hyperbolic media , 2016, Nature Communications.

[3]  Jinyun Liu,et al.  Template-Directed Directionally Solidified Three-Dimensionally Mesostructured AgCl-KCl Eutectic Photonic Crystals. , 2016, Advanced materials.

[4]  Nikolay I. Zheludev,et al.  Introducing the metamaterial roadmap , 2016 .

[5]  Nikolay I. Zheludev,et al.  Shape memory photonic metamaterial , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[6]  M. Plapp,et al.  Eutectic and peritectic solidification patterns , 2016 .

[7]  Nikolay I. Zheludev,et al.  Coherent excitation-selective spectroscopy of multipole resonances , 2016 .

[8]  João Valente,et al.  Two-dimensional control of light with light on metasurfaces , 2016, Light: Science & Applications.

[9]  Augustine Urbas,et al.  Multipolar interference for non-reciprocal nonlinear generation , 2015, Scientific Reports.

[10]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[11]  Eric Plum,et al.  Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial , 2016, Advanced materials.

[12]  Jake Fontana,et al.  Toward high throughput optical metamaterial assemblies. , 2015, Applied optics.

[13]  Shanhui Fan,et al.  Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody , 2015, Proceedings of the National Academy of Sciences.

[14]  Nikolay I. Zheludev,et al.  Nano-optomechanical nonlinear dielectric metamaterials , 2015, 1508.00995.

[15]  Min Gu,et al.  A Metamaterial Emitter for Highly Efficient Radiative Cooling , 2015 .

[16]  Hong Cai,et al.  A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial , 2015, Advanced materials.

[17]  T. Tumkur,et al.  Stimulated Emission of Surface Plasmons on Top of Metamaterials with Hyperbolic Dispersion , 2015 .

[18]  Prashanth Gopalan,et al.  Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces. , 2015, Nano letters.

[19]  Sheng Liu,et al.  Phased-array sources based on nonlinear metamaterial nanocavities , 2015, Nature Communications.

[20]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[21]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[22]  Nikolay I. Zheludev,et al.  Obtaining optical properties on demand , 2015, Science.

[23]  J. Jeffers,et al.  Coherent perfect absorption in deeply subwavelength films in the single-photon regime , 2015, Nature Communications.

[24]  J. Valentine,et al.  Dielectric metasurface analogue of electromagnetically induced transparency , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[25]  Shanhui Fan,et al.  Near complete violation of detailed balance in thermal radiation , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[26]  George C Schatz,et al.  Nanoscale Form Dictates Mesoscale Function in Plasmonic DNA-Nanoparticle Superlattices* , 2020, Spherical Nucleic Acids.

[27]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[28]  Luca Dal Negro,et al.  Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. , 2015, Optics letters.

[29]  László Gránásy,et al.  Ternary eutectic dendrites: Pattern formation and scaling properties. , 2015, The Journal of chemical physics.

[30]  Nikolay I. Zheludev,et al.  Reconfiguring photonic metamaterials with currents and magnetic fields , 2015 .

[31]  Kamil Sobczak,et al.  When Eutectics Meet Plasmonics: Nanoplasmonic, Volumetric, Self‐Organized, Silver‐Based Eutectic , 2015 .

[32]  Ilya V. Shadrivov,et al.  Wave scattering by metal-dielectric multilayer structures with gain , 2015 .

[33]  Augustine Urbas,et al.  Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles. , 2015, Nano letters.

[34]  Gérard Coquerel,et al.  Enhanced Second Harmonic Generation from an Organic Self-Assembled Eutectic Binary Mixture: A Case Study with 3-Nitrobenzoic and 3,5-Dinitrobenzoic Acids , 2015 .

[35]  Zubin Jacob,et al.  Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction , 2015 .

[36]  Ru-Wen Peng,et al.  Nonperiodic metallic gratings transparent for broadband terahertz waves , 2015 .

[37]  Nikolay I. Zheludev,et al.  Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor , 2014, Light: Science & Applications.

[38]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[39]  Z. Jacob,et al.  Photonic skin-depth engineering , 2014, 1410.2319.

[40]  Z. Jacob,et al.  Transparent subdiffraction optics: Nanoscale light confinement without metal , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[41]  Martin W. McCall,et al.  Optic axis-driven new horizons for hyperbolic metamaterials , 2015 .

[42]  Sergei A. Tretyakov,et al.  Hyperlens makes thermal emission strongly super-Planckian ☆ , 2015 .

[43]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[44]  David R. Smith,et al.  Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators , 2014 .

[45]  Anthony Grbic,et al.  Controlling Vector Bessel Beams with Metasurfaces , 2014 .

[46]  Igal Brener,et al.  Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. , 2014, Nano letters.

[47]  Zubin Jacob,et al.  Singular evanescent wave resonances in moving media. , 2014, Optics express.

[48]  Susumu Noda,et al.  Realization of dynamic thermal emission control. , 2014, Nature materials.

[49]  Yuri S. Kivshar,et al.  Colloquium : Nonlinear metamaterials , 2014 .

[50]  Marjan Saboktakin,et al.  Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. , 2014, ACS nano.

[51]  Martina Abb,et al.  Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas , 2014, Nature Communications.

[52]  Taejong Paik,et al.  Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. , 2014, Journal of the American Chemical Society.

[53]  Victor M. Orera,et al.  New polaritonic materials in the THz range made of directionally solidified halide eutectics , 2014 .

[54]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[55]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[56]  Cheng Zhang,et al.  High performance bianisotropic metasurfaces: asymmetric transmission of light. , 2014, Physical review letters.

[57]  George C Schatz,et al.  Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials , 2014, Nature Communications.

[58]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, Nature Communications.

[59]  Douglas H. Werner,et al.  Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications , 2014 .

[60]  John A Rogers,et al.  Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. , 2014, ACS nano.

[61]  John A. Rogers,et al.  Materials Selections and Growth Conditions for Large‐Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing , 2014 .

[62]  M. Silveirinha Optical instabilities and spontaneous light emission by polarizable moving matter , 2014, 1402.6482.

[63]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[64]  E. Weiss,et al.  Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods. , 2014, Nano letters.

[65]  Carsten Rockstuhl,et al.  Towards negative index self-assembled metamaterials , 2014, 1605.09277.

[66]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[67]  Yue Qiu,et al.  Rational Assembly of Optoplasmonic Hetero‐nanoparticle Arrays with Tunable Photonic–Plasmonic Resonances , 2014, Advanced functional materials.

[68]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[69]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[70]  Prashant Shekhar,et al.  Hyperbolic metamaterials: fundamentals and applications , 2014, Nano Convergence.

[71]  Evgenii E. Narimanov,et al.  Self-assembled tunable photonic hyper-crystals , 2013, Scientific Reports.

[72]  Andrea Alù,et al.  Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver , 2013, Advanced materials.

[73]  R. Fleury,et al.  Cloaking and invisibility: A review , 2014 .

[74]  L. D. Negro Optics of Aperiodic Structures: Fundamentals and Device Applications , 2013 .

[75]  Paul F Nealey,et al.  Tunable assembly of gold nanoparticles on nanopatterned poly(ethylene glycol) brushes. , 2013, Small.

[76]  David R. Smith,et al.  Forward and backward unidirectional scattering from plasmonic coupled wires. , 2013, Optics express.

[77]  Sanjay Krishna,et al.  Four‐Color Metamaterial Absorber THz Spatial Light Modulator , 2013 .

[78]  Chad A Mirkin,et al.  Epitaxial growth of DNA-assembled nanoparticle superlattices on patterned substrates. , 2013, Nano letters.

[79]  Nicholas P. Sergeant,et al.  Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification , 2013, Nature Communications.

[80]  Igor S. Nefedov,et al.  Total absorption in asymmetric hyperbolic media , 2013, Scientific Reports.

[81]  J. Khurgin,et al.  Plasmonic enhancement of the third order nonlinear optical phenomena: figures of merit. , 2013, Optics express.

[82]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[83]  Nader Engheta,et al.  Near-infrared metatronic nanocircuits by design. , 2013, Physical review letters.

[84]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[85]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[86]  Ricardo Ruiz,et al.  Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. , 2013, Nano letters.

[87]  Igor S. Nefedov,et al.  Waves in asymmetric hyperbolic media , 2013 .

[88]  M. Noginov,et al.  Low-threshold stimulated emission of surface plasmons polaritons , 2013, CLEO: 2013.

[89]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[90]  Zongfu Yu,et al.  Enhancing far-field thermal emission with thermal extraction , 2013, Nature Communications.

[91]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[92]  M. Kafesaki,et al.  Eutectic epsilon-near-zero metamaterial terahertz waveguides. , 2013, Optics letters.

[93]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[94]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .

[95]  C. Murphy,et al.  The Quest for Shape Control: A History of Gold Nanorod Synthesis , 2013 .

[96]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[97]  Jun Chen,et al.  Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. , 2013, Nano letters.

[98]  Nader Engheta,et al.  Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals. , 2013, Nano letters.

[99]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[100]  I. Smolyaninov,et al.  Experimental demonstration of metamaterial "multiverse" in a ferrofluid. , 2013, Optics express.

[101]  C. Murray,et al.  Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. , 2013, Nano letters.

[102]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[103]  Vincenzo Galdi,et al.  Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices , 2012, 1211.7260.

[104]  Z. Jacob,et al.  High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. , 2012, Optics express.

[105]  Apra Pandey,et al.  Nonlinear light concentrators. , 2012, Optics letters.

[106]  Y. Kivshar,et al.  Fano Resonances in All-dielectric Oligomers , 2022 .

[107]  Yanzhang Dong,et al.  Topology optimization of patch-typed left-handed metamaterial configurations for transmission performance within the radio frequency band based on the genetic algorithm , 2012 .

[108]  David R. Smith,et al.  Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory , 2012 .

[109]  Federico Capasso,et al.  Plasmonic mode engineering with templated self-assembled nanoclusters. , 2012, Nano letters.

[110]  Y. Kivshar,et al.  Metamaterials controlled with light. , 2012, Physical review letters.

[111]  Susumu Noda,et al.  Conversion of broadband to narrowband thermal emission through energy recycling , 2012, Nature Photonics.

[112]  Jacob B Khurgin,et al.  Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence. , 2012, Optics express.

[113]  Y. Kivshar,et al.  Nonlinear control of invisibility cloaking. , 2012, Optics express.

[114]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[115]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[116]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[117]  Mikhail A. Noginov,et al.  Low temperature studies of surface plasmon polaritons in silver films , 2012 .

[118]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[119]  Maria Kafesaki,et al.  Interacting Plasmon and Phonon Polaritons in Aligned Nano-and Microwires References and Links , 2022 .

[120]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[121]  V. Granata,et al.  μSR studies of superconductivity in eutectically grown mixed ruthenates , 2012 .

[122]  Sabine Bottin-Rousseau,et al.  Lamellar eutectic growth with anisotropic interphase boundaries: Experimental study using the rotating directional solidification method , 2012 .

[123]  Nikolay I. Zheludev,et al.  Controlling light-with-light without nonlinearity , 2012, Light: Science & Applications.

[124]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[125]  David R. Smith,et al.  Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film. , 2011, Optics express.

[126]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[127]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[128]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[129]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[130]  Peter Bermel,et al.  Thermophotovoltaic power conversion systems: current performance and future potential (持続可能社会を「エコ技術」により支える応用物理) , 2011 .

[131]  Ewa Gorecka,et al.  Growth of a Plate-Shaped SrTiO3–TiO2 Eutectic , 2011 .

[132]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[133]  David R. Smith,et al.  Controlling the second harmonic in a phase-matched negative-index metamaterial. , 2011, Physical review letters.

[134]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[135]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[136]  A. Zayats,et al.  Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. , 2011, Physical review letters.

[137]  Helin Yang,et al.  Perfect metamaterial absorber based on a split-ring-cross resonator , 2011 .

[138]  Shuang Zhang,et al.  Optical negative refraction by four-wave mixing in thin metallic nanostructures. , 2011, Nature materials.

[139]  M. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[140]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[141]  I. Smolyaninov,et al.  Metric signature transitions in optical metamaterials. , 2010, Physical review letters.

[142]  Jacob B. Khurgin,et al.  In search of the elusive lossless metal , 2010 .

[143]  David R. Smith,et al.  Analysis of nonlinear electromagnetic metamaterials , 2010, 1004.2784.

[144]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[145]  Lukas Novotny,et al.  Surface-enhanced nonlinear four-wave mixing. , 2010, Physical review letters.

[146]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[147]  Kazuro Kikuchi Coherent Optical Communications: Historical Perspectives and Future Directions , 2010 .

[148]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[149]  U. Chettiar,et al.  Frequency-domain simulations of a negative-index material with embedded gain. , 2009, Optics Express.

[150]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[151]  Andrea Alù,et al.  Boosting molecular fluorescence with a plasmonic nanolauncher. , 2009, Physical review letters.

[152]  Moniraj Ghosh,et al.  Oriented Assembly of Metamaterials , 2009, Science.

[153]  C. Grant Willson,et al.  Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication , 2009 .

[154]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[155]  Rafael Piestun,et al.  Negative permeability using arrays of aperiodic silver nanoclusters , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[156]  T. Shahbazyan,et al.  Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect. , 2008, Physical review letters.

[157]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[158]  William L. Schaich,et al.  Narrow-band, tunable infrared emission from arrays of microstrip patches , 2008 .

[159]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[160]  V. Podolskiy,et al.  Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. , 2007, Optics express.

[161]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[162]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[163]  Ajay Nahata,et al.  Transmission resonances through aperiodic arrays of subwavelength apertures , 2007, Nature.

[164]  Joseph Shamir,et al.  Optics inspired logic architecture. , 2007, Optics express.

[165]  Joachim Meier,et al.  Gain assisted surface plasmon polariton in quantum wells structures. , 2007, Optics express.

[166]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[167]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[168]  Anna C. Balazs,et al.  Nanoparticle Polymer Composites: Where Two Small Worlds Meet , 2006, Science.

[169]  Y. Kivshar,et al.  Tunable split-ring resonators for nonlinear negative-index metamaterials. , 2006, Optics express.

[170]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[171]  M. Malinowski,et al.  Self-Organized, Rodlike, Micrometer-Scale Microstructure of Tb3Sc2Al3O12—TbScO3 :Pr Eutectic. , 2006 .

[172]  V. Shalaev,et al.  Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification , 2006, physics/0601055.

[173]  M. S. Syrchin,et al.  Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials. , 2005, Physical review letters.

[174]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[175]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[176]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[177]  Y. Kivshar,et al.  Nonlinear properties of left-handed metamaterials. , 2003, Physical review letters.

[178]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[179]  Pascal Royer,et al.  Second order self-organized pattern of terbium-scandium-aluminum garnet and terbium-scandium perovskite eutectic , 2002 .

[180]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[181]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[182]  Andreas Stintz,et al.  Optical gain in InAs/InGaAs quantum-dot structures : Experiments and theoretical model , 2000 .

[183]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[184]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[185]  Sien Chi,et al.  Nonlinear light beam propagation in uniaxial crystals: nonlinear refractive index, self-trapping and self-focusing , 2000 .

[186]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[187]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures , 1999 .

[188]  Carlo Sirtori,et al.  Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons , 1998 .

[189]  Andrea Fiore,et al.  Quantum Engineering of Optical Nonlinearities , 1996, Science.

[190]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[191]  Peter W. Milonni,et al.  The Quantum Vacuum: An Introduction to Quantum Electrodynamics , 1993 .

[192]  Yariv,et al.  Adiabatic nonperturbative derivation of electric-field-induced optical nonlinearities in quantum wells. , 1993, Physical review. B, Condensed matter.

[193]  Jacob B. Khurgin,et al.  Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures. , 1989, Quantum Wells for Optics and Optoelectronics.

[194]  Thomas K. Gaylord,et al.  Hybrid guided modes in biaxial dielectric planar waveguides , 1988, Annual Meeting Optical Society of America.

[195]  J. Vukusic Optical Fiber Communications: Principles and Practice , 1986 .

[196]  M. Feit,et al.  Beam propagation in uniaxial anisotropic media , 1983 .

[197]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[198]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[199]  L. Lewin The electrical constants of a material loaded with spherical particles , 1947 .