Structural biological materials: Overview of current research

Through specific biological examples this article illustrates the complex designs that have evolved in nature to address strength, toughness, and weight optimization. Current research is reviewed, and the structure of some shells, bones, antlers, crab exoskeletons, and avian feathers and beaks is described using the principles of materials science and engineering by correlating the structure with mechanical properties. In addition, the mechanisms of deformation and failure are discussed.

[1]  M. Swain,et al.  Fracture toughness of bovine bone: influence of orientation and storage media. , 2001, Biomaterials.

[2]  W. Bonfield,et al.  Young's modulus of compact bone. , 1974, Journal of biomechanics.

[3]  A. Burstein,et al.  The Mechanical Properties of Cortical Bone , 1974 .

[4]  A. Burstein,et al.  The elastic and ultimate properties of compact bone tissue. , 1975, Journal of biomechanics.

[5]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[6]  D. Raabe,et al.  Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation , 2006 .

[7]  A. Burstein,et al.  The elastic modulus for bone. , 1974, Journal of biomechanics.

[8]  V. Geist The Evolution of Horn-Like Organs , 1966 .

[9]  K. Vecchio,et al.  Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells , 2001 .

[10]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[11]  D. Raabe,et al.  Structure and Crystallographic Texture of Arthropod Bio-Composites , 2005 .

[12]  J. Bertram,et al.  Functional design of horse hoof keratin: the modulation of mechanical properties through hydration effects. , 1987, The Journal of experimental biology.

[13]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[14]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[15]  H. Rolf,et al.  Hard fallow deer antler: A living bone till antler casting? , 1999, The Anatomical record.

[16]  Reinhold H Dauskardt,et al.  Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. , 2006, Biomaterials.

[17]  A. P. Jackson,et al.  A physical model of nacre , 1989 .

[18]  W. Meister,et al.  Changes in histological structure of the long bones of white‐tailed deer (Odocoileus virginianus) during the growth of the antlers , 1956, The Anatomical record.

[19]  W. Hayes,et al.  Relations between tensile impact properties and microstructure of compact bone , 1977, Calcified Tissue Research.

[20]  George Sanger,et al.  Structure and Mechanics , 1991 .

[21]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Meyers,et al.  Structure and mechanical properties of crab exoskeletons. , 2008, Acta biomaterialia.

[23]  W C Hayes,et al.  Fracture mechanics parameters for compact bone--effects of density and specimen thickness. , 1977, Journal of biomechanics.

[24]  David J. Benson,et al.  The toucan beak: Structure and mechanical response , 2006 .

[25]  Eduard Arzt,et al.  Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos , 2006 .

[26]  A. Heuer,et al.  Novel composite microstructure and mechanical behavior of mollusk shell , 1989 .

[27]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[28]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[29]  J. Henshaw Antlers—the Unbrittle Bones of Contention , 1971, Nature.

[30]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  G. Lincoln The role of antlers in the behaviour of red deer , 1972 .

[32]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[33]  J. W. Farrent,et al.  The influence of hydration on the tensile and compressive properties of avian keratinous tissues , 2004 .

[34]  D. Chapman Antlers–bones of contention , 1975 .

[35]  R. Young,et al.  Crack velocity and the fracture of bone. , 1978, Journal of biomechanics.

[36]  T. Clutton‐Brock The Functions of Antlers , 1982 .

[37]  Yasuaki Seki,et al.  Structure and mechanical behavior of a toucan beak , 2005 .

[38]  M. Meyers,et al.  The growth of nacre in the abalone shell. , 2008, Acta biomaterialia.

[39]  B. Ji,et al.  How do slender mineral crystals resist buckling in biological materials? , 2004 .

[40]  J. Currey,et al.  Mechanical properties of bone tissues with greatly differing functions. , 1979, Journal of biomechanics.

[41]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[42]  Julian F. V. Vincent,et al.  Composite theory and the effect of water on the stiffness of horn keratin , 1987 .

[43]  Marc A. Meyers,et al.  Growth and structure in abalone shell , 2005 .

[44]  R. Martin,et al.  The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. , 1993, Journal of biomechanics.

[45]  Richard J. Goss,et al.  Deer Antlers: Regeneration, Function and Evolution , 1983 .

[46]  G. Pharr,et al.  Variations in the individual thick lamellar properties within osteons by nanoindentation. , 1999, Bone.

[47]  Mehmet Sarikaya,et al.  Mechanical Property-Microstructural Relationships in Abalone Shell , 1989 .

[48]  Yasuaki Seki,et al.  Structural biological composites: An overview , 2006 .

[49]  R H Bonser,et al.  Longitudinal variation in mechanical competence of bone along the avian humerus. , 1995, The Journal of experimental biology.

[50]  Dierk Raabe,et al.  Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus , 2006 .

[51]  E. Armanios Fracture of Composites , 1996 .

[52]  J. Currey The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. , 1988, Journal of biomechanics.

[53]  M. Niinomi,et al.  Influence of Bone Structure on Mechanical Properties of Bovine and Swine Compact Bones , 2005 .