Unification of a Global Height System at the Centimeter-Level Using Precise Clock Frequency Signal Links

The International Association of Geodesy (IAG) aims to establish the International Height Reference System (IHRS) as one of its primary scientific objectives. Central to the realization of the IHRS is global vertical datum unification, which requires the connection of existing local vertical height reference systems (VHS) robustly and consistently. However, conventional methods are not suitable for estimating the offsets between two distant local height systems. In this paper, we propose a framework for connecting two local VHSs using ultraprecise clock frequency signal links between satellites and ground stations, referred to as the satellite frequency signal transmission (SFST) approach. The SFST approach allows for the direct determination of the geopotential and height differences between two ground datum stations without any location restrictions between the two VHSs. The simulation results show that the VHSs of China and the US can be unified with an accuracy of several centimeters, provided that the stability of atomic clocks used on-board the satellite and at on-ground datum locations reaches 4.8×10−17τ−1/2 for an averaging time τ (in seconds). We conclude that the SFST approach shows promise for achieving centimeter-level accuracy in unifying the global vertical height datum and represents a new paradigm for the realization of the IHRS.

[1]  Ziyu Shen,et al.  Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks' Frequency Comparisons , 2022, Remote. Sens..

[2]  W. Shen,et al.  An improved approach for testing gravitational redshift via satellite-based three frequency links combination , 2021 .

[3]  S. Kolkowitz,et al.  Differential clock comparisons with a multiplexed optical lattice clock , 2021, Nature.

[4]  W. Shen,et al.  Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique , 2019, Journal of Earth Science.

[5]  E. Oelker,et al.  Optical clock intercomparison with $6\times 10^{-19}$ precision in one hour , 2019, 1902.02741.

[6]  K. Gao,et al.  Ca+40 ion optical clock with micromotion-induced shifts below 1×10−18 , 2019, Physical Review A.

[7]  Jürgen Müller,et al.  Clock networks for height system unification: a simulation study , 2018, Geophysical Journal International.

[8]  A. Ludlow,et al.  Atomic clock performance enabling geodesy below the centimetre level , 2018, Nature.

[9]  Fei Li,et al.  The impact of solid Earth-tide model error on tropospheric zenith delay estimates and GPS coordinate time series , 2018 .

[10]  C. Lämmerzahl,et al.  The relativistic geoid , 2017, IEEE International Workshop on Metrology for AeroSpace.

[11]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2017, 1705.04089.

[12]  Shuangxi Zhang,et al.  Determination of Gravitational Potential at Ground Using Optical-Atomic Clocks on Board Satellites and on Ground Stations and Relevant Simulation Experiments , 2017, Surveys in Geophysics.

[13]  Thomas Gruber,et al.  Definition and Proposed Realization of the International Height Reference System (IHRS) , 2017, Surveys in Geophysics.

[14]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions , 2017 .

[15]  M. Sideris,et al.  Vertical datum unification for the International Height Reference System (IHRS) , 2017 .

[16]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[17]  C. Guerlin,et al.  Determination of a high spatial resolution geopotential model using atomic clock comparisons , 2016, Journal of Geodesy.

[18]  Szabolcs Rózsa,et al.  The Geodesist’s Handbook 2016 , 2016, Journal of Geodesy.

[19]  Y. Kuroishi,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016, Nature Photonics.

[20]  Shuangxi Zhang,et al.  Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system , 2016 .

[21]  K. Mikula,et al.  A conventional value for the geoid reference potential $$W_{0}$$W0 , 2016 .

[22]  Mohammad Ali Sharifi,et al.  A Comparison Between Numerical Differentiation and Kalman Filtering for a Leo Satellite Velocity Determination , 2013 .

[23]  M. Kuhn,et al.  Evaluation of high-degree series expansions of the topographic potential to higher-order powers , 2012 .

[24]  T. Gruber,et al.  Towards worldwide height system unification using ocean information , 2012 .

[25]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[26]  Hans-Georg Scherneck,et al.  Assessing the accuracy of predicted ocean tide loading displacement values , 2008 .

[27]  Sergei A. Klioner,et al.  Geodesy and relativity , 2008 .

[28]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[29]  A. Einstein Die Feldgleichungen der Gravitation , 2006 .

[30]  Z. Kang,et al.  Precise orbit determination for the GRACE mission using only GPS data , 2006 .

[31]  Milan Horemuž,et al.  Polynomial interpolation of GPS satellite coordinates , 2006 .

[32]  M. Vermeer,et al.  The permanent tide in GPS positioning , 1996 .

[33]  Elke Stöcker-Meier Theory of oceanic levelling for improving the geoid from satellite altimetry , 1990 .

[34]  Peter Teunissen,et al.  Height datum definition, height datum connection and the role of the geodetic boundary value problem , 1988 .

[35]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[36]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[37]  M. W. Levine,et al.  A test of the equivalence principle using a space-borne clock , 1979 .

[38]  Dieter Bilitza,et al.  Goals and status of the International Reference Ionosphere , 1978 .

[39]  V. Novikov,et al.  Doppler frequency shift during ionospheric propagation of decameter radio waves (review) , 1975 .

[40]  J. Flury Relativistic geodesy , 2019, Fundamental Theories of Physics.

[41]  M. Sideris,et al.  The GBVP approach for vertical datum unification: recent results in North America , 2015, Journal of Geodesy.

[42]  C. Gerlach,et al.  Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach , 2012, Journal of Geodesy.

[43]  spAcE AcEs → Atomic clock EnsEmblE in spAcE ( AcEs ) , 2011 .

[44]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[45]  P Tavella,et al.  A mathematical model for the atomic clock error , 2003 .