Culturing and Transfection of Pleomorphic Trypanosoma brucei.

[1]  Terry K. Smith,et al.  Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing , 2019, Cell.

[2]  M. Biran,et al.  Gluconeogenesis is essential for trypanosome development in the tsetse fly vector , 2018, PLoS pathogens.

[3]  Raúl O. Cosentino,et al.  Exploiting CRISPR–Cas9 technology to investigate individual histone modifications , 2018, Nucleic acids research.

[4]  David Horn,et al.  Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes , 2018, Scientific Reports.

[5]  R. Tarleton,et al.  Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins , 2017, mBio.

[6]  K. Matthews,et al.  The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream , 2017, Pathogens.

[7]  E. Gluenz,et al.  A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids , 2017, Royal Society Open Science.

[8]  A. MacLeod,et al.  The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes , 2016, eLife.

[9]  J. Sunter,et al.  High-throughput Gene Tagging in Trypanosoma brucei , 2016, Journal of visualized experiments : JoVE.

[10]  K. Gull,et al.  A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids , 2015, Open Biology.

[11]  A. Ivens,et al.  Genome wide dissection of the quorum sensing signaling pathway in Trypanosoma brucei , 2013, Nature.

[12]  M. Barrett,et al.  A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity , 2013, PLoS pathogens.

[13]  K. Matthews,et al.  Stable transformation of pleomorphic bloodstream form Trypanosoma brucei. , 2013, Molecular and biochemical parasitology.

[14]  H. Stark,et al.  Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream , 2012, PLoS pathogens.

[15]  P. De Baetselier,et al.  Adenylate Cyclases of Trypanosoma brucei Inhibit the Innate Immune Response of the Host , 2012, Science.

[16]  Isabel Roditi,et al.  Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. , 2011, Molecular and biochemical parasitology.

[17]  K. Kirk,et al.  A surface transporter family conveys the trypanosome differentiation signal , 2009, Nature.

[18]  Stephan Herminghaus,et al.  Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes , 2007, Cell.

[19]  Isabel Roditi,et al.  Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. , 2007, Molecular and biochemical parasitology.

[20]  R. McCulloch,et al.  Trypanosoma brucei homologous recombination is dependent on substrate length and homology, though displays a differential dependence on mismatch repair as substrate length decreases , 2007, Nucleic acids research.

[21]  E. Vassella,et al.  A Mitogen-Activated Protein Kinase Controls Differentiation of Bloodstream Forms of Trypanosoma brucei , 2006, Eukaryotic Cell.

[22]  S. Kunz,et al.  A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. , 2006, Molecular and biochemical parasitology.

[23]  Markus Engstler,et al.  Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. , 2004, Genes & development.

[24]  J. Barry,et al.  Transformation of monomorphic and pleomorphic Trypanosoma brucei. , 2004, Methods in molecular biology.

[25]  R. McCulloch,et al.  Mismatch Repair Regulates Homologous Recombination, but Has Little Influence on Antigenic Variation, in Trypanosoma brucei* , 2003, Journal of Biological Chemistry.

[26]  G. Cross,et al.  Trypanosoma brucei MRE11 is non-essential but influences growth, homologous recombination and DNA double-strand break repair. , 2002, Molecular and biochemical parasitology.

[27]  C. Turner,et al.  Deletion of a novel protein kinase with PX and FYVE‐related domains increases the rate of differentiation of Trypanosoma brucei , 2001, Molecular microbiology.

[28]  S. Magez,et al.  Comparative Analysis of Antibody Responses against HSP60, Invariant Surface Glycoprotein 70, and Variant Surface Glycoprotein Reveals a Complex Antigen-Specific Pattern of Immunoglobulin Isotype Switching during Infection byTrypanosoma brucei , 2000, Infection and Immunity.

[29]  C. Clayton Genetic manipulation of kinetoplastida. , 1999, Parasitology today.

[30]  G. Cross,et al.  Trypanosoma brucei , 1998 .

[31]  M. Boshart,et al.  Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. , 1997, Molecular and biochemical parasitology.

[32]  M. Boshart,et al.  Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. , 1997, Journal of cell science.

[33]  M. Boshart,et al.  High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. , 1996, Molecular and biochemical parasitology.

[34]  P. Overath,et al.  Transient adenylate cyclase activation accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms. , 1993, Molecular and biochemical parasitology.

[35]  G. Cross,et al.  Autonomously replicating single‐copy episomes in Trypanosoma brucei show unusual stability. , 1993, The EMBO journal.

[36]  G. Cross,et al.  High-efficiency clonal growth of bloodstream- and insect-form Trypanosoma brucei on agarose plates. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Schwarz,et al.  Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. , 1990, European journal of biochemistry.

[38]  H Hirumi,et al.  Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. , 1989, The Journal of parasitology.

[39]  G. Cross,et al.  Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro , 1985, The Journal of experimental medicine.

[40]  T. Baltz,et al.  Cultivation in a semi‐defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. , 1985, The EMBO journal.

[41]  E. Pays,et al.  Inactivation and reactivation of a variant‐specific antigen gene in cyclically transmitted Trypanosoma brucei. , 1985, The EMBO journal.

[42]  R. Brun,et al.  In vitro cultivation of bloodstream forms of Trypanosoma brucei, T. rhodesiense, and T. gambiense. , 1981, The Journal of protozoology.

[43]  G. Cross,et al.  In vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei , 1980, Parasitology.

[44]  G. Cross,et al.  Antigenic variation in clones of animal-infective Trypanosoma brucei derived and maintained in vitro , 1980, Parasitology.

[45]  M. Tanner,et al.  Cultivation of vertebrate infective forms derived from metacyclic forms of pleomorphic Trypanosoma brucei stocks. Short communication. , 1979, Acta tropica.

[46]  J. Doyle,et al.  African trypanosomes: cultivation of animal-infective Trypanosoma brucei in vitro. , 1977, Science.

[47]  J. Barry,et al.  First tsetse fly transmission of the "AnTat" serodeme of Trypanosoma brucei. , 1977, Annales de la Societe belge de medecine tropicale.

[48]  N. Van Meirvenne,et al.  Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. 1. Rationalization of the experimental approach. , 1975, Annales de la Societe belge de medecine tropicale.