Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor

This paper proposes a novel high-order local pattern descriptor, local derivative pattern (LDP), for face recognition. LDP is a general framework to encode directional pattern features based on local derivative variations. The nth-order LDP is proposed to encode the (n-1)th -order local derivative direction variations, which can capture more detailed information than the first-order local pattern used in local binary pattern (LBP). Different from LBP encoding the relationship between the central point and its neighbors, the LDP templates extract high-order local information by encoding various distinctive spatial relationships contained in a given local region. Both gray-level images and Gabor feature images are used to evaluate the comparative performances of LDP and LBP. Extensive experimental results on FERET, CAS-PEAL, CMU-PIE, Extended Yale B, and FRGC databases show that the high-order LDP consistently performs much better than LBP for both face identification and face verification under various conditions.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[3]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[4]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[5]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Kazuo Kyuma,et al.  Face Recognition System Using Local Autocorrelations and Multiscale Integration , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Wen Gao,et al.  Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition , 2007, IEEE Transactions on Image Processing.

[9]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[10]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[11]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[15]  Wen Gao,et al.  The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Wen Gao,et al.  Learning informative features for spatial histogram-based object detection , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[17]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  David Zhang,et al.  Online Palmprint Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[21]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[22]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Witold Pedrycz,et al.  Face Recognition Using an Enhanced Independent Component Analysis Approach , 2007, IEEE Transactions on Neural Networks.

[24]  LinLin Shen,et al.  MutualBoost learning for selecting Gabor features for face recognition , 2006, Pattern Recognit. Lett..

[25]  Thomas Serre,et al.  A Component-based Framework for Face Detection and Identification , 2007, International Journal of Computer Vision.

[26]  Prashant Parikh A Theory of Communication , 2010 .

[27]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[30]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Okechukwu A. Uwechue Human Face Recognition Using Third-Order Synthetic Neural Networks , 1997 .