A multifrequency radio continuum study of the Magellanic Clouds – I. Overall structure and star formation rates

This scientific work makes use of the Murchison Radio-astronomy Observatory, operated by CSIRO. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site. Support for the operation of the Murchison Widefield Array is provided by the Australian Government (NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the Pawsey Supercomputing Centre which is supported by the Western Australian and Australian Governments and the Centre of Excellence for All-sky Astrophysics (CAASTRO), which is an Australian Research Council Centre of Excellence, funded by grant CE110001020. Parts of this research were conducted with the support of Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. This research also made use of Montage. Montage is funded by the National Science Foundation under Grant Number ACI-1440620, and was previously funded by the National Aeronautics and Space Administration’s Earth Science Technology Office, Computation Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  N. Seymour,et al.  A novel approach for characterizing broad-band radio spectral energy distributions , 2018, 1802.09290.

[3]  Mubdi Rahman,et al.  The star-forming complex LMC-N79 as a future rival to 30 Doradus , 2017, Nature Astronomy.

[4]  J. Moustakas,et al.  Calibration of Ultraviolet, Mid-infrared, and Radio Star Formation Rate Indicators , 2017, 1709.00183.

[5]  H. Rottgering,et al.  The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0 , 2017, 1704.06268.

[6]  F. Haberl,et al.  Statistical Analysis of Supernova Remnants in the Large Magellanic Cloud , 2017, 1703.02676.

[7]  R. D. Baldi,et al.  A high-resolution radio continuum study of the dwarf irregular galaxy IC 10 , 2017, 1701.06571.

[8]  Christopher L. Williams,et al.  GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.

[9]  E. Lenc,et al.  Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A , 2016, 1606.05974.

[10]  E. Grebel,et al.  LOW SURFACE BRIGHTNESS IMAGING OF THE MAGELLANIC SYSTEM: IMPRINTS OF TIDAL INTERACTIONS BETWEEN THE CLOUDS IN THE STELLAR PERIPHERY , 2016, 1602.04222.

[11]  J. Chiang,et al.  Deep view of the Large Magellanic Cloud with six years of Fermi -LAT observations , 2016 .

[12]  E. Pellegrini,et al.  THE RELATIONSHIP BETWEEN MOLECULAR GAS, H i, AND STAR FORMATION IN THE LOW-MASS, LOW-METALLICITY MAGELLANIC CLOUDS , 2015, 1510.08084.

[13]  Sergey E. Koposov,et al.  A 10 kpc stellar substructure at the edge of the Large Magellanic Cloud: Perturbed outer disc or evidence for tidal stripping? , 2015, 1508.01356.

[14]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[15]  S. J. Tingay,et al.  The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.

[16]  F. Owen,et al.  INTEGRATED RADIO CONTINUUM SPECTRA OF GALAXIES , 2014, 1408.6296.

[17]  Joana M. Oliveira,et al.  SPITZER VIEW OF MASSIVE STAR FORMATION IN THE TIDALLY STRIPPED MAGELLANIC BRIDGE , 2014, 1403.0618.

[18]  Linda J. Smith,et al.  THE HERschel INVENTORY OF THE AGENTS OF GALAXY EVOLUTION IN THE MAGELLANIC CLOUDS, A HERSCHEL OPEN TIME KEY PROGRAM , 2013 .

[19]  N. Kallivayalil,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. II. THE LARGE MAGELLANIC CLOUD ROTATION FIELD IN THREE DIMENSIONS , 2013, 1305.4641.

[20]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[21]  C. Alcock,et al.  THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. I. HUBBLE SPACE TELESCOPE/WFC3 DATA AND ORBIT IMPLICATIONS , 2013, 1301.0832.

[22]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[23]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[24]  M. Filipović,et al.  An analysis of the FIR/RADIO continuum correlation in the small Magellanic cloud , 2012, 1209.0052.

[25]  E. Pellegrini,et al.  THE OPTICAL DEPTH OF H ii REGIONS IN THE MAGELLANIC CLOUDS , 2012, 1202.3334.

[26]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[27]  Joana M. Oliveira,et al.  THE STATE OF THE GAS AND THE RELATION BETWEEN GAS AND STAR FORMATION AT LOW METALLICITY: THE SMALL MAGELLANIC CLOUD , 2011, 1107.1717.

[28]  K. Bekki,et al.  The Effect of Drag from the Galactic Hot Halo on the Magellanic Stream and Leading Arm , 2011, Publications of the Astronomical Society of Australia.

[29]  M. Dopita,et al.  The 3D structure of N132D in the LMC: a late-stage young supernova remnant , 2010, 1009.0964.

[30]  A. Tzioumis,et al.  MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS , 2009, 0912.4979.

[31]  Christopher L. Williams,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[32]  M. Wolleben,et al.  An Australia Telescope Compact Array 20-cm radio continuum study of the Large Magellanic Cloud , 2007 .

[33]  S. Kim,et al.  An ATCA 20cm Radio Continuum Study of the Large Magellanic Cloud , 2007, 0709.1990.

[34]  Astronomy,et al.  The Calibration of Mid-Infrared Star Formation Rate Indicators , 2007, 0705.3377.

[35]  J. Harris The Magellanic Bridge: The Nearest Purely Tidal Stellar Population , 2006, astro-ph/0612107.

[36]  L. Staveley-Smith,et al.  A multiresolution analysis of the radio-FIR correlation in the Large Magellanic Cloud , 2006, astro-ph/0602380.

[37]  Chen Cao,et al.  PAH and Mid-Infrared Luminosities as Measures of Star Formation Rate in Spitzer First Look Survey Galaxies , 2005, astro-ph/0509281.

[38]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[39]  D. O. Astronomy,et al.  The Parkes HI survey of the Magellanic System , 2004, astro-ph/0411453.

[40]  M. Dopita,et al.  A Neutral Hydrogen Survey of the Large Magellanic Cloud: Aperture Synthesis and Multibeam Data Combined , 2003, astro-ph/0506224.

[41]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[42]  A. Bolatto,et al.  Unusual CO Line Ratios and Kinematics in the N83/N84 Region of the Small Magellanic Cloud , 2003, astro-ph/0306144.

[43]  K. Glazebrook,et al.  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[44]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[45]  R. Hilditch,et al.  Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance , 2003, astro-ph/0411672.

[46]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[47]  R. Haynes,et al.  A new look at the large-scale H I structure of the Large Magellanic Cloud , 2002, astro-ph/0210501.

[48]  W. Reid,et al.  An ATCA radio-continuum study of the Small Magellanic Cloud – I. Source catalogues at 1.42, 2.37, 4.80 and 8.64 GHz , 2002 .

[49]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[50]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[51]  R. Sault,et al.  The large‐scale HI structure of the Small Magellanic Cloud , 1999 .

[52]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[53]  R. Haynes,et al.  A radio continuum study of the Magellanic Clouds - VII. Discrete radio sources in the Magellanic Clouds , 1998 .

[54]  R. Smith,et al.  The UM/CTIO Magellanic Cloud Emission-line Survey , 1996, Publications of the Astronomical Society of Australia.

[55]  D. Hatzidimitriou,et al.  An H i aperture synthesis mosaic of the Small Magellanic Cloud , 1997 .

[56]  Fionn Murtagh,et al.  In Astronomical Data Analysis Software and Systems IV , 1995 .

[57]  G. Helou,et al.  A physical model of the infrared-to-radio correlation in galaxies , 1993 .

[58]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[59]  E. E. Baart,et al.  A 2.3-GHz radio continuum map of the Magellanic Cloud region , 1987 .

[60]  R. Haynes,et al.  Large-scale filaments of star formation in the Large Magellanic Cloud , 1987 .

[61]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[62]  R. Rubin A Discussion of the Sizes and Excitation of H II Regions , 1968 .

[63]  A. Turtle,et al.  The Spectrum of the Galactic Radio Emission: I. Observations of Low Resolving Power , 1962 .

[64]  B. Mills Radio Frequency Radiation from External Galaxies , 1959 .

[65]  C. Shain Observations of extragalactic radio emission , 1959 .

[66]  Mills The Observation and Interpretation of Radio Emission from Some Bright Galaxies , 1955 .

[67]  E. Salpeter The Luminosity function and stellar evolution , 1955 .