Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering

Magnetic resonance diffusion imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm, it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted volume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clinicians, especially when it is not possible to predict how long a subject may remain still in the magnet.

[1]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[2]  Olivier D. Faugeras,et al.  EEG-fMRI fusion of non-triggered data using Kalman filtering , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[3]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[4]  Rachid Deriche,et al.  A fast and robust ODF estimation algorithm in Q-ball imaging , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[5]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[6]  Baba C. Vemuri,et al.  Multi-fiber Reconstruction from Diffusion MRI Using Mixture of Wisharts and Sparse Deconvolution , 2007, IPMI.

[7]  Luc Brun,et al.  Fiber Tracking on HARDI Data using Robust ODF Fields , 2007, 2007 IEEE International Conference on Image Processing.

[8]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[9]  D. Tuch,et al.  Boosting the sampling efficiency of q‐ball imaging using multiple wavevector fusion , 2007, Magnetic resonance in medicine.

[10]  Nicholas Ayache,et al.  Artificial vision for mobile robots - stereo vision and multisensory perception , 1991 .

[11]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[12]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[13]  Jean-Baptiste Poline,et al.  Solving Incrementally the Fitting and Detection Problems in fMRI Time Series , 2004, MICCAI.

[14]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[15]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[16]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[17]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[18]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[19]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[20]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[21]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[22]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[23]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[24]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[25]  H. Gu,et al.  Circular spectrum mapping for intravoxel fiber structures based on high angular resolution apparent diffusion coefficients , 2003, Magnetic resonance in medicine.

[26]  Rachid Deriche,et al.  Apparent diffusion profile estimation from high angular resolution diffusion images , 2006, SPIE Medical Imaging.

[27]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[28]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[29]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[30]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[31]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[32]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[33]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[34]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[35]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[36]  N. Papadakis,et al.  Minimal gradient encoding for robust estimation of diffusion anisotropy. , 2000, Magnetic resonance imaging.

[37]  J. Dubois,et al.  Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.

[38]  Jerry L. Prince,et al.  Diffusion Tensor Estimation by Maximizing Rician Likelihood , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[39]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.