Optimization of p-GaN/InGaN/n-GaN Double Heterojunction p-i-n Solar Cell for High Efficiency: Simulation Approach

We have conducted numerical simulation of p-GaN/In0.12Ga0.88N/n-GaN, p-i-n double heterojunction solar cell. The doping density, individual layer thickness, and contact pattern of the device are investigated under solar irradiance of AM1.5 for optimized performance of solar cell. The optimized solar cell characteristic parameters for cell area of 1  × 1 mm2 are open circuit voltage of 2.26 V, short circuit current density of 3.31 mA/cm2, fill factor of 84.6%, and efficiency of 6.43% with interdigitated grid pattern.

[1]  Naoki Kobayashi,et al.  Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence , 2018 .

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  W. Walukiewicz,et al.  Modeling of InGaN/Si tandem solar cells , 2008 .

[4]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[5]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[6]  Baoping Zhang,et al.  Fabrication and characterization of InGaN p-i-n homojunction solar cell , 2009 .

[7]  Yoshiki Saito,et al.  RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys , 2003 .

[8]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[9]  Ahmed S. Bouazzi,et al.  Theoretical possibilities of InxGa1-xN tandem PV structures , 2005 .

[10]  W. Marsden I and J , 2012 .

[11]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[12]  M. Islam,et al.  PROJECTED PERFORMANCE OF InXGa 1X N-BASED MULTI-JUNCTION SOLAR CELLS , 2006 .

[13]  Chih-Chung Yang,et al.  Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells , 2000 .

[14]  Jinmin Li,et al.  Simulation of In0.65Ga0.35 N single-junction solar cell , 2007 .

[15]  J. Hubin,et al.  Effect of the recombination function on the collection in a p-i-n solar cell , 1995 .

[16]  Michael E. Levinshtein,et al.  Carrier mobility model for GaN , 2003 .

[17]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[18]  Theodore D. Moustakas,et al.  Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition , 1997 .

[19]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[20]  Ray-Hua Horng,et al.  High-quality InGaN∕GaN heterojunctions and their photovoltaic effects , 2008 .

[21]  Jonathan J. Wierer,et al.  The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices , 2010 .

[22]  W. Ebeling Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .

[23]  Wladek Walukiewicz,et al.  Finite element simulations of compositionally graded InGaN solar cells , 2010 .

[24]  B. Liou In$_x$ Ga$_{1-x}$ N–GaN-Based Solar Cells With a Multiple-Quantum-Well Structure on SiCN–Si(111) Substrates , 2010, IEEE Photonics Technology Letters.