An Engineering Solution for Solving Mesh Size Effects in the Simulation of Delamination with Cohesive Zone Models

This paper presents a methodology to determine the parameters to be used in the constitutive equations of Cohesive Zone Models employed in the simulation of delamination in composite materials by means of decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is also proposed. The procedure ensures that the energy dissipated by the fracture process is computed correctly. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used for the simulation of fracture processes.

[1]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[2]  Ronald Krueger,et al.  The Virtual Crack Closure Technique : History , Approach and Applications , 2002 .

[3]  John R. Rice,et al.  A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture , 2001 .

[4]  D. Borst,et al.  A NON-LINEAR FINITE ELEMENT APPROACH FOR THE ANALYSIS OF MODE-I FREE EDGE DELAMINATION IN COMPOSITES , 1993 .

[5]  Carlos G. Davila,et al.  Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities , 2004 .

[6]  R. de Borst,et al.  Numerical Simulation of Free Edge Delamination in Graphite-Epoxy Laminates under Uniaxial Tension , 1991 .

[7]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[8]  A. Carpinteri,et al.  Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory , 2003 .

[9]  Shuguang Li,et al.  Variational principles for generalized plane strain problems and their applications , 2005 .

[10]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[11]  F. L. Matthews,et al.  Predicting Progressive Delamination of Composite Material Specimens via Interface Elements , 1999 .

[12]  T. O'Brien Characterization of delamination onset and growth in a composite laminate , 1982 .

[13]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[14]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[15]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[16]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[17]  A.S.D. Wang,et al.  Fracture Analysis of Interlaminar Cracking , 1989 .

[18]  Laurent Daudeville,et al.  Delamination analysis by damage mechanics: Some applications , 1995 .

[19]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[20]  A. Jagota,et al.  Crack blunting and the strength of soft elastic solids , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Alberto Corigliano,et al.  Damage analysis of interlaminar fracture specimens , 1995 .

[22]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[23]  P.M.S.T. de Castro,et al.  Mode-I interlaminar fracture of carbon/epoxy cross-ply composites , 2002 .

[24]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[25]  Stephen R Reid,et al.  Modelling Interlaminar and Intralaminar Damage in Filament-Wound Pipes under Quasi-Static Indentation , 2002 .

[26]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[27]  M. D. Moura,et al.  Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination , 2001 .

[28]  Huajian Gao,et al.  Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods , 2000 .

[29]  John R. Rice,et al.  The mechanics of earthquake rupture , 1980 .

[30]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[31]  Pedro P. Camanho,et al.  An Interface Damage Model for the Simulation of Delamination Under Variable-Mode Ratio in Composite Materials , 2004 .

[32]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[33]  R. Girard,et al.  Numerical analysis of composite systems by using interphase/interface models , 1997 .

[34]  A.S.D. Wang,et al.  The Dependence of Transverse Cracking and Delamination on Ply Thickness in Graphite/Epoxy Laminates , 1982 .

[35]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[36]  Alberto Corigliano,et al.  Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens , 1996 .