Microarray Data Analysis for Transcriptome Profiling.

Microarray data have vastly accumulated in the past two decades. Due to the high-throughput characteristic of microarray techniques, it has transformed biological studies from specific genes to transcriptome level, and deeply boosted many fields of biological studies. While microarray offers great advantages for expression profiling, on the other hand it faces a lot challenges for computational analysis. In this chapter, we demonstrate how to perform standard analysis including data preprocessing, quality assessment, differential expression analysis, and general downstream analyses.

[1]  Ricardo J. G. B. Campello,et al.  On the selection of appropriate distances for gene expression data clustering , 2014, BMC Bioinformatics.

[2]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Audrey Kauffmann,et al.  Bioinformatics Applications Note Arrayqualitymetrics—a Bioconductor Package for Quality Assessment of Microarray Data , 2022 .

[4]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[5]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[6]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[7]  Ann M. Hess,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Filtering for increased power for microarray data analysis , 2008 .

[8]  Rafael A. Irizarry,et al.  A framework for oligonucleotide microarray preprocessing , 2010, Bioinform..

[9]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[10]  Crispin J. Miller,et al.  Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis , 2005, Bioinform..

[11]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[12]  Patrik D'haeseleer,et al.  How does gene expression clustering work? , 2005, Nature Biotechnology.

[13]  Kai Wang,et al.  Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks , 2007, ISMB/ECCB.

[14]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[16]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[17]  R. Gentleman,et al.  Independent filtering increases detection power for high-throughput experiments , 2010, Proceedings of the National Academy of Sciences.

[18]  Catalin C. Barbacioru,et al.  Evaluation of DNA microarray results with quantitative gene expression platforms , 2006, Nature Biotechnology.

[19]  J. Hoheisel Microarray technology: beyond transcript profiling and genotype analysis , 2006, Nature Reviews Microbiology.

[20]  Samuel J. Taylor,et al.  PD-1 regulates KLRG1+ group 2 innate lymphoid cells , 2017, The Journal of experimental medicine.

[21]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[22]  B. Oliver,et al.  Microarrays, deep sequencing and the true measure of the transcriptome , 2011, BMC Biology.

[23]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[24]  Chris T. A. Evelo,et al.  User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org , 2013, Nucleic Acids Res..