On the Geometry of Cyclic Lattices

[1]  Stephan Ramon Garcia,et al.  Permutation invariant lattices , 2014, Discret. Math..

[2]  Michael Schneider,et al.  Sieving for Shortest Vectors in Ideal Lattices , 2013, AFRICACRYPT.

[3]  Ron Steinfeld,et al.  Making NTRU as Secure as Worst-Case Problems over Ideal Lattices , 2011, EUROCRYPT.

[4]  J. Martinet Perfect Lattices in Euclidean Spaces , 2010 .

[5]  A. Schürmann,et al.  Computational geometry of positive definite quadratic forms : polyhedral reduction theories, algorithms, and applications , 2008 .

[6]  Sanjeeb Dash,et al.  On Nearly Orthogonal Lattice Bases and Random Lattices , 2007, SIAM J. Discret. Math..

[7]  Daniele Micciancio,et al.  Generalized Compact Knapsacks Are Collision Resistant , 2006, ICALP.

[8]  Chris Peikert,et al.  Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices , 2006, TCC.

[9]  S. Robins,et al.  Frobenius Problem and the Covering Radius of a Lattice , 2005, Discret. Comput. Geom..

[10]  Curtis T. McMullen,et al.  Minkowski’s Conjecture, Well-Rounded Lattices and Topological Dimension , 2005 .

[11]  Nick Howgrave-Graham,et al.  NTRUSIGN: Digital Signatures Using the NTRU Lattice , 2003, CT-RSA.

[12]  Daniele Micciancio,et al.  Generalized Compact Knapsacks, Cyclic Lattices, and Efficient One-Way Functions , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[13]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[14]  Michael E. Pohst,et al.  On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.

[15]  Johannes A. Buchmann,et al.  Density of Ideal Lattices , 2009, Algorithms and Number Theory.

[16]  Sherman K. Stein,et al.  Algebra and Tiling: Minkowski's Conjecture , 2009 .

[17]  C. Zong Minkowski's conjecture , 2006 .

[18]  Richard Baraniuk,et al.  On Nearly Orthogonal Lattice Bases , 2005 .

[19]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[20]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[21]  J. Neukirch Algebraic Number Theory , 1999 .

[22]  Amir K. Khandani,et al.  On the Complexity of Decoding Lattices Using the Korkin-Zolotarev Reduced Basis , 1998, IEEE Trans. Inf. Theory.

[23]  W. Scharlau,et al.  Rational Quadratic Forms , 1985 .

[24]  John Laurence Donaldson,et al.  Minkowski Reduction of Integral Matrices , 1979 .

[25]  H. O. Foulkes Abstract Algebra , 1967, Nature.