A Robust and Computationally Efficient Motion Detection Algorithm Based on Sigma-Delta Background Estimation

This paper presents a new algorithm to detect moving objects within a scene acquired by a stationary camera. A simple recursive non linear operator, the Sigma-Delta filter, is used to estimate two orders of temporal statistics for every pixel of the image. The output data provide a scene characterization allowing a simple and efficient pixel-level change detection framework. For a more suitable detection, exploiting spatial correlation in these data is necessary. We use them as a multiple observation field in a Markov model, leading to a spatiotemporal regularization of the pixel-level solution. This method yields a good trade-off in terms of robustness and accuracy, with a minimal cost in memory and a low computational complexity.

[1]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[2]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[3]  Larry S. Davis,et al.  A Perturbation Method for Evaluating Background Subtraction Algorithms , 2003 .

[4]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[6]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Patrick Garda,et al.  Motion detection, labeling, data association and tracking, in real-time on RISC computer , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[8]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Idaku Ishii,et al.  A digital vision chip specialized for high-speed target tracking , 2003 .

[10]  Neta Sokolovsky Motion Detection , 1994 .

[11]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[12]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[13]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..