Controlled Ohmic and nonlinear electrical transport in inkjet-printed single-wall carbon nanotube films

We present the fabrication and characterization of logic elements (transistors and interconnects) built using our recently developed inkjet-printer-controlled deposition of single-wall carbon nanotube network films. The method requires no preselection of ``metallic'' or ``semiconducting'' nanotubes. By selecting the number of prints on a specified region, it is possible to have low-density, nonlinear, gate-voltage controllable transistors or high-density, linear, high-current-throughput metallic interconnects without any gate-voltage response. Intermediate steps drive the films between the nonlinear and linear regimes with precise controllability. The transport mechanism in these films as a function of bias, gate voltage, and temperature dependence have been investigated and analyzed using junction properties of metal-semiconductors in the context of networks of carbon nanotubes.

[1]  John Robertson,et al.  Realistic applications of CNTs , 2004 .

[2]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[3]  Giovanni Fanchini,et al.  Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization , 2007 .

[4]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[5]  A. B. Kaiser,et al.  Heterogeneous model for conduction in carbon nanotubes , 1998 .

[6]  P. Ajayan,et al.  Quantitative analysis of hysteresis in carbon nanotube field-effect devices , 2006 .

[7]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[8]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[9]  Heli Jantunen,et al.  Inkjet printing of electrically conductive patterns of carbon nanotubes. , 2006, Small.

[10]  Odintsov Schottky barriers in carbon nanotube heterojunctions , 2000, Physical review letters.

[11]  Jijun Zhao,et al.  Gas molecule adsorption in carbon nanotubes and nanotube bundles , 2002 .

[12]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[13]  S. Ravi P. Silva,et al.  The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation , 2007 .

[14]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[15]  Qian Wang,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003 .

[16]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[17]  Heli Jantunen,et al.  Inkjet printing of transparent and conductive patterns of single‐walled carbon nanotubes and PEDOT‐PSS composites , 2007 .

[18]  Phaedon Avouris,et al.  Nanotube electronics and optoelectronics , 2006 .

[19]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[20]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[21]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[22]  B. Goldberg,et al.  Optical determination of electron-phonon coupling in carbon nanotubes. , 2006, Physical review letters.

[23]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[24]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[25]  Toshishige Yamada Modeling of carbon nanotube Schottky barrier modulation under oxidizing conditions , 2004 .

[26]  M. Burghard Asymmetric end-functionalization of carbon nanotubes. , 2005, Small.

[27]  Oleg V Prezhdo,et al.  Time-domain ab initio simulation of electron and hole relaxation dynamics in a single-wall semiconducting carbon nanotube. , 2006, Physical review letters.

[28]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[29]  R. Tamura Rectified current in the carbon nanotube junction , 2002 .

[30]  S. Fan,et al.  Nonlinear electrical conducting behavior of carbon nanotube networks in silicone elastomer , 2007 .

[31]  Jarrod Vaillancourt,et al.  High-speed thin-film transistor on flexible substrate fabricated at room temperature , 2006 .

[32]  Andrew K. L. Lim,et al.  Transport through crossed nanotubes , 2000 .

[33]  Current–Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A “Bottom-Up” Perspective , 2006, IEEE Electron Device Letters.

[34]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[35]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[36]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[37]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[38]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[39]  M. Burghard,et al.  Electronic and vibrational properties of chemically modified single-wall carbon nanotubes , 2005 .

[40]  David Tománek,et al.  Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. , 2005, Journal of the American Chemical Society.

[41]  Bingqing Wei,et al.  ELECTRICAL TRANSPORT IN PURE AND BORON-DOPED CARBON NANOTUBES , 1999 .

[42]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[43]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[44]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[45]  A. B. Kaiser,et al.  Electronic transport properties of conducting polymers and carbon nanotubes , 2001 .

[46]  J. Salvetat,et al.  Pressure dependence of the resistivity of single-wall carbon nanotube ropes , 2000 .

[47]  Sanjeev K. Manohar,et al.  Flexible vapour sensors using single walled carbon nanotubes , 2006 .

[48]  Erich Schlecht,et al.  Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. , 2005, Nano letters.

[49]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[50]  Leon Balents,et al.  COULOMB INTERACTIONS AND MESOSCOPIC EFFECTS IN CARBON NANOTUBES , 1997 .

[51]  S. Bachilo,et al.  Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot , 2003 .

[52]  Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks , 2006 .

[53]  M. Itkis,et al.  Optimization of the Ni-Y catalyst composition in bulk electric arc synthesis of single-walled carbon nanotubes by use of near-infrared spectroscopy , 2004 .

[54]  J. Boland,et al.  Nanoscale Study of Conduction Through Carbon Nanotube Networks , 2004 .

[55]  L. Roschier,et al.  Multiwalled carbon nanotube: Luttinger versus fermi liquid , 2001 .

[56]  M. Radosavljevic,et al.  Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors , 2002 .

[57]  Robert C. Haddon,et al.  Synthesis and Properties of a Water‐Soluble Single‐Walled Carbon Nanotube–Poly(m‐aminobenzene sulfonic acid) Graft Copolymer , 2004 .

[58]  Pablo Jarillo-Herrero,et al.  Electron-hole symmetry in a semiconducting carbon nanotube quantum dot , 2004, Nature.

[59]  Niranjan Govind,et al.  Nanotube-based gas sensors - role of structural defects , 2006 .

[60]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[61]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[62]  Paul Tangney,et al.  Temperature dependence of the band gap of semiconducting carbon nanotubes. , 2005, Physical review letters.

[63]  Phaedon Avouris Carbon nanotube electronics , 2002 .

[64]  P. Ajayan,et al.  Charge-injection-induced dynamic screening and origin of hysteresis in field-modulated transport in single-wall carbon nanotubes , 2006 .

[65]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.