Computational Intelligence for Parameter Estimation of Biochemical Systems

In the field of Systems Biology, simulating the dynamics of biochemical models represents one of the most effective methodologies to understand the functioning of cellular processes in normal or altered conditions. However, the lack of kinetic rates, necessary to perform accurate simulations, strongly limits the scope of these analyses. Parameter Estimation (PE), which consists in identifying a proper model parameterization, is a non-linear, non-convex and multi-modal optimization problem, typically tackled by means of Computational Intelligence techniques, such as Evolutionary Computation and Swarm Intelligence. In this work, we perform a thorough investigation of the most widespread methods for PE-namely, Artificial Bee Colony (ABC), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Differential Evolution (DE), Estimation of Distribution Algorithm (EDA), Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Fuzzy Self-Tuning PSO (FST-PSO)-comparing their performances on a set of synthetic (yet realistic) biochemical models of increasing size and complexity. Our results show that a variant of the settings-free FST-PSO algorithm can consistently outperform all other methods; ABC and GAs represent the most performing alternatives, while methods based on multivariate normal distributions (e.g., CMA-ES, EDA) struggle to keep pace with the other approaches. Index Terms-Computational Intelligence, Systems Biology, Parameter Estimation, Evolutionary Computation, Swarm Intelligence

[1]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[2]  Ion Petre,et al.  A simple mass-action model for the eukaryotic heat shock response and its mathematical validation , 2011, Natural Computing.

[3]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[4]  Keijo Ruohonen,et al.  Computational study of noise in a large signal transduction network , 2011, BMC Bioinformatics.

[5]  Marco S. Nobile,et al.  Computational Strategies for a System-Level Understanding of Metabolism , 2014, Metabolites.

[6]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[7]  Giancarlo Mauri,et al.  The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae , 2012, EURASIP J. Bioinform. Syst. Biol..

[8]  Daniela Besozzi,et al.  Reaction-Based Models of Biochemical Networks , 2016, CiE.

[9]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[10]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[12]  Marco S. Nobile,et al.  The impact of particles initialization in PSO: Parameter estimation as a case in point , 2015, 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[13]  Giancarlo Mauri,et al.  LASSIE: simulating large-scale models of biochemical systems on GPUs , 2017, BMC Bioinformatics.

[14]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[15]  Andreas Zell,et al.  Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .

[16]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[17]  Jie Zhao,et al.  A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems , 2014, Inf. Sci..

[18]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[19]  Giancarlo Mauri,et al.  Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization , 2017, Swarm Evol. Comput..

[20]  Ajith Abraham,et al.  Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning , 2009, Foundations of Computational Intelligence.

[21]  Andries Petrus Engelbrecht,et al.  Inertia weight control strategies for particle swarm optimization , 2016, Swarm Intelligence.

[22]  Attila Csikász-Nagy,et al.  In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae , 2013, BMC Systems Biology.

[23]  Fei He,et al.  Sensitivity analysis and robust experimental design of a signal transduction pathway system , 2008 .

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[26]  James A. Glazier,et al.  libRoadRunner 2.0: a high performance SBML simulation and analysis library , 2022, Bioinformatics.

[27]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[28]  Marco S. Nobile,et al.  Graphics processing units in bioinformatics, computational biology and systems biology , 2016, Briefings Bioinform..

[29]  Zhijian Wu,et al.  Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems , 2011, Soft Comput..

[30]  Giancarlo Mauri,et al.  Proactive Particles in Swarm Optimization: A self-tuning algorithm based on Fuzzy Logic , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[31]  Maurice Clerc,et al.  Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm , 2009, Swarm Intelligence.

[32]  Giancarlo Mauri,et al.  Massive Exploration of Perturbed Conditions of the Blood Coagulation Cascade through GPU Parallelization , 2014, BioMed research international.

[33]  Giancarlo Mauri,et al.  GPU-accelerated simulations of mass-action kinetics models with cupSODA , 2014, The Journal of Supercomputing.

[34]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[35]  Andries Petrus Engelbrecht,et al.  A survey of techniques for characterising fitness landscapes and some possible ways forward , 2013, Inf. Sci..

[36]  Giancarlo Mauri,et al.  Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. , 2012, Biotechnology advances.

[37]  Marco S. Nobile,et al.  Proactive Particles in Swarm Optimization: A settings-free algorithm for real-parameter single objective optimization problems , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[38]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[39]  C. Tovey Hill Climbing with Multiple Local Optima , 1985 .

[40]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[41]  S. Bhat,et al.  Modeling and analysis of mass-action kinetics , 2009, IEEE Control Systems.

[42]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.