Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1

Significant improvements to the sample-location, characterization and data-collection algorithms on the autonomous ESRF beamline MASSIF-1 are described. The workflows now include dynamic beam-diameter adjustment and multi-position and multi-crystal data collections.

[1]  B. Henrissat,et al.  An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion , 2018, Nature Communications.

[2]  A. N. Popov,et al.  Optimization of data collection taking radiation damage into account , 2010, Acta crystallographica. Section D, Biological crystallography.

[3]  G. Evans,et al.  The design of macromolecular crystallography diffraction experiments , 2011, Acta crystallographica. Section D, Biological crystallography.

[4]  Didier Nurizzo,et al.  An algal photoenzyme converts fatty acids to hydrocarbons , 2017, Science.

[5]  R. Medema,et al.  Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures , 2017, The Journal of Biological Chemistry.

[6]  M. Bowler,et al.  Measurement of the intrinsic variability within protein crystals: implications for sample-evaluation and data-collection strategies. , 2014, Acta crystallographica. Section F, Structural biology communications.

[7]  Didier Nurizzo,et al.  RoboDiff: combining a sample changer and goniometer for highly automated macromolecular crystallography experiments , 2016, Acta crystallographica. Section D, Structural biology.

[8]  Tom Alber,et al.  Automated protein crystal structure determination using ELVES. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Stura,et al.  Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies. , 2017, Journal of synchrotron radiation.

[10]  Olof Svensson,et al.  Fully automatic characterization and data collection from crystals of biological macromolecules , 2015, Acta crystallographica. Section D, Biological crystallography.

[11]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[12]  G. Waldo,et al.  Library methods for structural biology of challenging proteins and their complexes. , 2013, Current opinion in structural biology.

[13]  Konrad Büssow,et al.  Facilities and methods for the high-throughput crystal structural analysis of human proteins. , 2003, Accounts of chemical research.

[14]  R. V. van Montfort,et al.  Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen , 2016, Journal of medicinal chemistry.

[15]  I. Foster,et al.  Service-Oriented Science , 2005, Science.

[16]  Peter Murphy,et al.  Automated harvesting and processing of protein crystals through laser photoablation , 2016, Acta crystallographica. Section D, Structural biology.

[17]  Satyavati Kharde,et al.  The structure of Rpf2–Rrs1 explains its role in ribosome biogenesis , 2015, Nucleic acids research.

[18]  T. Richmond,et al.  Robots, pipelines, polyproteins: Enabling multiprotein expression in prokaryotic and eukaryotic cells , 2011, Journal of Structural Biology.

[19]  M. Keller,et al.  Structural Evidence for a Role of the Multi-functional Human Glycoprotein Afamin in Wnt Transport. , 2017, Structure.

[20]  Olof Svensson,et al.  Fully automatic macromolecular crystallography: the impact of MASSIF-1 on the optimum acquisition and quality of data , 2016 .

[21]  Aina E Cohen,et al.  An automated system to mount cryo-cooled protein crystals on a synchrotron beam line, using compact sample cassettes and a small-scale robot. , 2002, Journal of applied crystallography.

[22]  Olof Svensson,et al.  ISPyB: an information management system for synchrotron macromolecular crystallography , 2011, Bioinform..

[23]  Christian Morawe,et al.  The ID23-2 structural biology microfocus beamline at the ESRF , 2009, Journal of synchrotron radiation.

[24]  D Spruce,et al.  Automation of the collection and processing of X-ray diffraction data -- a generic approach. , 2002, Acta crystallographica. Section D, Biological crystallography.

[25]  Haiwei Song,et al.  Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab , 2016, Cell Research.

[26]  Graeme Winter,et al.  xia2: an expert system for macromolecular crystallography data reduction , 2010 .

[27]  Janet Newman,et al.  Identifying, studying and making good use of macromolecular crystals , 2014, Acta crystallographica. Section F, Structural biology communications.

[28]  Gwyndaf Evans,et al.  High-speed crystal detection and characterization using a fast-readout detector , 2010, Acta crystallographica. Section D, Biological crystallography.

[29]  Olof Svensson,et al.  Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF , 2013, Journal of applied crystallography.

[30]  A. N. Popov,et al.  Choice of data-collection parameters based on statistic modelling. , 2003, Acta crystallographica. Section D, Biological crystallography.

[31]  DeMarco V Camper,et al.  Fully automated protein purification. , 2009, Analytical biochemistry.

[32]  L Jacquamet,et al.  Upgrade of the CATS sample changer on FIP-BM30A at the ESRF: towards a commercialized standard. , 2009, Journal of synchrotron radiation.

[33]  On the variability of experimental data in macromolecular crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Gyorgy Snell,et al.  Automated sample mounting and alignment system for biological crystallography at a synchrotron source. , 2004, Structure.

[36]  Matthew W. Bowler,et al.  FlexED8: the first member of a fast and flexible sample-changer family for macromolecular crystallography , 2017, Acta crystallographica. Section D, Structural biology.

[37]  Francisco J. Quintana,et al.  Addressing challenges in data collection: The role of automation in complex translational research , 2015 .

[38]  Andrzej Joachimiak,et al.  High-throughput crystallography for structural genomics. , 2009, Current opinion in structural biology.

[39]  Didier Nurizzo,et al.  Recent progress in robot-based systems for crystallography and their contribution to drug discovery , 2013, Expert opinion on drug discovery.

[40]  Bertram Ludaescher,et al.  AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery. , 2013, Acta crystallographica. Section D, Biological crystallography.

[41]  Olof Svensson,et al.  EDNA: a framework for plugin-based applications applied to X-ray experiment online data analysis. , 2009, Journal of synchrotron radiation.

[42]  N. J. Baxter,et al.  Atomic details of near-transition state conformers for enzyme phosphoryl transfer revealed by MgF 3 - rather than by phosphoranes , 2010, Proceedings of the National Academy of Sciences.

[43]  L. Mazzei,et al.  Merging of synchrotron serial crystallographic data by a genetic algorithm , 2016, Acta crystallographica. Section D, Structural biology.

[44]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[45]  Stephen K Burley,et al.  Rapid-access, high-throughput synchrotron crystallography for drug discovery. , 2012, Trends in pharmacological sciences.

[46]  Gebhard F. X. Schertler,et al.  Protein crystallography with a micrometre-sized synchrotron-radiation beam , 2008, Acta crystallographica. Section D, Biological crystallography.

[47]  Sebastien Petitdemange,et al.  Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  Adam Round,et al.  The status of the macromolecular crystallography beamlines at the European Synchrotron Radiation Facility , 2015 .

[49]  Clemens Vonrhein,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.

[50]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[51]  Yan Li,et al.  Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function. , 2016, Cell reports.

[52]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[53]  A. N. Popov,et al.  The application of hierarchical cluster analysis to the selection of isomorphous crystals. , 2012, Acta Crystallographica Section D: Biological Crystallography.

[54]  Kurt Wüthrich,et al.  Structural Biology and Crystallization Communications the Jcsg High-throughput Structural Biology Pipeline , 2022 .