Augmented Reality in UAVs Applications

We present the example of Attitude Indicator Augmented Reality (AR) control for the unmanned aerial vehicles (UAV) ground control station. The article describes perspective heads-up display overlaid on the image, which is acquired from the UAV rotatable camera. Article shows the mechanisms of aircraft camera calibration with the AR artificial horizon. The whole algorithm of the render instructions is presented. Elements used in the augmented reality are as follows: 3D artificial horizon, latitude and longitude, GPS info, executed command, time to command end, percent of command accomplish, fuel and battery level, height and speed vertical scale, landing field direction arrow, unmanned vehicles marks.

[1]  Józef Wrona,et al.  Technology Development of Military Applications of Unmanned Ground Vehicles , 2013, Vision Based Systemsfor UAV Applications.

[2]  Marcin Pacholczyk,et al.  Re-Handling Operations in Small Container Terminal Operated by Reach Stackers , 2010 .

[3]  Aleksander Nawrat,et al.  Camera Head Control System with a Changeable Gain in a Proportional Regulator for Object Tracking , 2014 .

[4]  Jia Zeng System Framework and Standards of Ground Control Station of Unmanned Aircraft System , 2011 .

[5]  Judy Pearsall,et al.  Oxford Dictionary of English , 2010 .

[6]  Raja Sengupta,et al.  Obstacle Detection for Small Autonomous Aircraft Using Sky Segmentation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Aleksander Nawrat,et al.  A Prototype of Unmanned Aerial Vehicle for Image Acquisition , 2012, ICCVG.

[8]  Aleksander Nawrat,et al.  Vision based systems for UAV applications , 2013 .

[9]  Cezary Kownacki Obstacle Avoidance Strategy for Micro Aerial Vehicle , 2011 .

[10]  T. Niedziela,et al.  Multiłącznik IMPRESJA IQ - element instalacji inteligentnego budynku wykorzystującej magistralę CAN , 2011 .

[11]  Xiao Xiao,et al.  Vision-based road-following using a small autonomous aircraft , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[12]  Eric Theunissen,et al.  Using perspective guidance overlay to improve UAV manual control performance , 2007, SPIE Defense + Commercial Sensing.

[13]  Tadeusz Niezgoda,et al.  Numerical analysis of missile impact being shot by rocket propelled grenades with rod armour , 2011 .

[14]  Aleksander Nawrat,et al.  SETh: The Method for Long-Term Object Tracking , 2014, ICCVG.

[15]  Aleksander Nawrat,et al.  The Limitation for the Angular Velocity of the Camera Head during Object Tracking with the Use of the UAV , 2014 .

[16]  Kimon P. Valavanis,et al.  Unmanned Aircraft Systems , 2009 .

[17]  Marcin Pacholczyk,et al.  Planning as Artificial Intelligence Problem - Short Introduction and Overview , 2013 .

[18]  Karol Jędrasiak,et al.  The Prototype of Gyro-Stabilized UAV Gimbal for Day-Night Surveillance , 2013 .

[19]  Karol Jędrasiak,et al.  Design and Implementation of Mobile Ground Base Station for UGV , 2014 .

[20]  Karol Jędrasiak,et al.  Inertial Navigation Systems and Its Practical Applications , 2012 .

[21]  Karol Jędrasiak,et al.  Wykorzystanie kamer termowizyjnych w systemach dozoru wizyjnego infrastruktury krytycznej sieci dystrybucyjnej gazu , 2012 .

[22]  Tadeusz Niezgoda,et al.  Analysis of protective structures made of various composite materials subjected to impact , 2008 .

[23]  Krzysztof Jaskot,et al.  A Distributed Control Group of Mobile Robots in a Limited Area with a Vision System , 2013, Vision Based Systemsfor UAV Applications.

[24]  Marcin Zugaj,et al.  Research and training simulator of unmanned quadrotor , 2013, 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR).

[25]  D. Bereska,et al.  Implementacja magistrali CAN i protokołu CANopen w robocie edukacyjnym , 2008 .

[26]  Artur Ryt,et al.  Real-Time Laser Point Tracking , 2014, ICCVG.