Structured Bit-Interleaved LDPC Codes for MLC Flash Memory

Due to a structural feature in the programming process of MLC (two bits per cell) and TLC (three bits per cell) flash memory, the majority of errors that occur are single-bit errors. Moreover, the voltages used to store the bits typically result in different bit error probabilities for the two or three types of bits. In this work we analyze binary regular LDPC codes in the standard bit-interleaved coded modulation implementation, assuming different probabilities on the bits, to determine what ratio of each type of bit should be connected at the check nodes to improve the decoding threshold. We then propose a construction of nonbinary LDPC codes using their binary images, resulting in check node types that come close to these optimal ratios.

[1]  Fan Zhang,et al.  LDPC codes for rank modulation in flash memories , 2010, 2010 IEEE International Symposium on Information Theory.

[2]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[3]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[4]  Krishna R. Narayanan,et al.  Iterative soft decoding of Reed-Solomon codes , 2004, IEEE Communications Letters.

[5]  Paul H. Siegel,et al.  Characterizing flash memory: Anomalies, observations, and applications , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[6]  Paul H. Siegel,et al.  Characterization and error-correcting codes for TLC flash memories , 2012, 2012 International Conference on Computing, Networking and Communications (ICNC).

[7]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[8]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[9]  Olgica Milenkovic,et al.  On unequal error protection LDPC codes based on Plotkin-type constructions , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[10]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[12]  Lara Dolecek,et al.  Graded Bit-Error-Correcting Codes With Applications to Flash Memory , 2013, IEEE Transactions on Information Theory.

[13]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[14]  Joachim Rosenthal,et al.  Pseudocodeword weights for non-binary LDPC codes , 2006, 2006 IEEE International Symposium on Information Theory.

[15]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[16]  David Declercq,et al.  Design of non binary LDPC codes using their binary image: algebraic properties , 2006, 2006 IEEE International Symposium on Information Theory.

[17]  David Declercq,et al.  Enhancement of Unequal Error Protection Properties of LDPC Codes , 2007, EURASIP J. Wirel. Commun. Netw..

[18]  Paul H. Siegel,et al.  Error characterization and coding schemes for flash memories , 2010, 2010 IEEE Globecom Workshops.

[19]  Haruhiko Kaneko,et al.  Error Control Coding for Multilevel Cell Flash Memories Using Nonbinary Low-Density Parity-Check Codes , 2009, 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[20]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[21]  David Declercq,et al.  Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images , 2008, IEEE Transactions on Communications.

[22]  Lara Dolecek,et al.  Graph cover ensembles of non-binary protograph LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[23]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed–Solomon Codes by Adapting the Parity-Check Matrix , 2005, IEEE Transactions on Information Theory.