Refractive index of human red blood cells between 290 nm and 1100 nm determined by optical extinction measurements

[1]  Francisco E. Robles,et al.  Ultraviolet Hyperspectral Interferometric Microscopy , 2018, Scientific Reports.

[2]  Jochen Guck,et al.  Accurate evaluation of size and refractive index for spherical objects in quantitative phase imaging. , 2018, Optics express.

[3]  Valery V Tuchin,et al.  Measurement of refractive index of hemoglobin in the visible/NIR spectral range , 2018, Journal of biomedical optics.

[4]  R. Richards-Kortum,et al.  Towards a needle-free diagnosis of malaria: in vivo identification and classification of red and white blood cells containing haemozoin , 2017, Malaria Journal.

[5]  R. Richards-Kortum,et al.  Towards a needle-free diagnosis of malaria: in vivo identification and classification of red and white blood cells containing haemozoin , 2017, Malaria Journal.

[6]  M. Bär,et al.  Extinction spectra of suspensions of microspheres: determination of the spectral refractive index and particle size distribution with nanometer accuracy. , 2017, Applied optics.

[7]  Zachary J Smith,et al.  A new red cell index and portable RBC analyzer for screening of iron deficiency and Thalassemia minor in a Chinese population , 2017, Scientific Reports.

[8]  A. V. Chernyshev,et al.  Advanced consumable‐free morphological analysis of intact red blood cells by a compact scanning flow cytometer , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[9]  Ji Yi,et al.  Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells , 2017, Journal of biomedical optics.

[10]  Markus Bär,et al.  Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model. , 2016, Applied optics.

[11]  Natan T. Shaked,et al.  Rapid 3D Refractive‐Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation , 2016, Advanced science.

[12]  YongKeun Park,et al.  Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging , 2016, Scientific Reports.

[13]  P. H. Yap,et al.  Cell refractive index for cell biology and disease diagnosis: past, present and future. , 2016, Lab on a chip.

[14]  Kyoohyun Kim,et al.  Hyperspectral optical diffraction tomography. , 2015, Optics express.

[15]  E. C. Le Ru,et al.  smarties: User-friendly codes for fast and accurate calculations of light scattering by spheroids , 2015, 1511.00798.

[16]  Qing Ye,et al.  Measurement of the refractive index of hemoglobin solutions for a continuous spectral region. , 2015, Biomedical optics express.

[17]  YongKeun Park,et al.  Profiling individual human red blood cells using common-path diffraction optical tomography , 2014, Scientific Reports.

[18]  A. Patzak,et al.  Nonvasoconstrictive hemoglobin particles as oxygen carriers. , 2013, ACS nano.

[19]  Ping Yang,et al.  Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method , 2013, Journal of biomedical optics.

[20]  Alexandre Douplik,et al.  Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis , 2012, Journal of biomedical optics.

[21]  S. Jacques,et al.  Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. , 2012, Physical review letters.

[22]  Jaeduck Jang,et al.  Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. , 2012, Optics express.

[23]  Gladimir V. G. Baranoski,et al.  A Cell‐Based Light Interaction Model for Human Blood , 2012, Comput. Graph. Forum.

[24]  Xiang Wang,et al.  In vitro kinetics of oxygen transport in erythrocyte suspension or unmodified hemoglobin solution from human and other animals. , 2011, Canadian journal of physiology and pharmacology.

[25]  V. Tuchin,et al.  The refractive index of human hemoglobin in the visible range , 2011, Physics in medicine and biology.

[26]  M. Mota,et al.  Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing , 2011, Malaria Journal.

[27]  YongKeun Park,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2009, BiOS.

[28]  V. Backman,et al.  Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis. , 2009, Optics letters.

[29]  P. Marquet,et al.  Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[30]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[31]  Valery V. Tuchin,et al.  Monitoring of blood proteins glycation by refractive index and spectral measurements , 2008 .

[32]  M. Daimon,et al.  Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. , 2007, Applied optics.

[33]  Martina Meinke,et al.  Empirical model functions to calculate hematocrit-dependent optical properties of human blood. , 2007, Applied optics.

[34]  Martina Meinke,et al.  Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. , 2006, Journal of biomedical optics.

[35]  M. Friebel,et al.  Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration. , 2006, Applied optics.

[36]  M. Friebel,et al.  Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. , 2005, Journal of biomedical optics.

[37]  A. V. Chernyshev,et al.  Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation. , 2005, Applied optics.

[38]  J. Delanghe,et al.  Serum free hemoglobin concentrations in healthy individuals are related to haptoglobin type. , 2005, Clinical chemistry.

[39]  P. Buddhiwant,et al.  Simultaneous determination of size and refractive index of red blood cells by light scattering measurements , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[40]  Vadim Backman,et al.  Spectroscopic diagnosis and imaging of invisible pre-cancer. , 2004, Faraday discussions.

[41]  N. Suttorp,et al.  Sensitivity of hemozoin detection by automated flow cytometry in non‐ and semi‐immune malaria patients , 2003, Cytometry. Part B, Clinical cytometry.

[42]  Robert J Olson,et al.  Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates. , 2003, Applied optics.

[43]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[44]  S. Shapshay,et al.  Detection of preinvasive cancer cells , 2000, Nature.

[45]  D. Polyzos,et al.  Scattering of he-ne laser light by an average-sized red blood cell. , 1999, Applied optics.

[46]  Louise Poissant Part I , 1996, Leonardo.

[47]  M. H. Metz,et al.  Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration. , 1985, Applied optics.

[48]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[49]  L. Ornstein,et al.  Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry. , 1983, Cytometry.

[50]  R. Barer Refractometry and interferometry of living cells. , 1957, Journal of the Optical Society of America.

[51]  R. Barer,et al.  Refractometry of Living Cells Part I. Basic Principles , 1954 .

[52]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[53]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[54]  W. Zijlstra,et al.  Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin : Determination and Application , 2000 .

[55]  D. J. Segelstein The complex refractive index of water , 1981 .

[56]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .