Galaxy And Mass Assembly: A Comparison between Galaxy-Galaxy Lens Searches in KiDS/GAMA

Strong gravitational lenses are a rare and instructive type of astronomical object. Identification has long relied on serendipity, but different strategies -- such as mixed spectroscopy of multiple galaxies along the line of sight, machine learning algorithms, and citizen science -- have been employed to identify these objects as new imaging surveys become available. We report on the comparison between spectroscopic, machine learning, and citizen science identification of galaxy-galaxy lens candidates from independently constructed lens catalogs in the common survey area of the equatorial fields of the GAMA survey. In these, we have the opportunity to compare high-completeness spectroscopic identifications against high-fidelity imaging from the Kilo Degree Survey (KiDS) used for both machine learning and citizen science lens searches. We find that the three methods -- spectroscopy, machine learning, and citizen science -- identify 47, 47, and 13 candidates respectively in the 180 square degrees surveyed. These identifications barely overlap, with only two identified by both citizen science and machine learning. We have traced this discrepancy to inherent differences in the selection functions of each of the three methods, either within their parent samples (i.e. citizen science focuses on low-redshift) or inherent to the method (i.e. machine learning is limited by its training sample and prefers well-separated features, while spectroscopy requires sufficient flux from lensed features to lie within the fiber). These differences manifest as separate samples in estimated Einstein radius, lens stellar mass, and lens redshift. The combined sample implies a lens candidate sky-density $\sim0.59$ deg$^{-2}$ and can inform the construction of a training set spanning a wider mass-redshift space.

[1]  M. Radovich,et al.  New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey , 2020, The Astrophysical Journal.

[2]  F. Courbin,et al.  A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  D. Eisenstein,et al.  Galaxy–Galaxy lensing in HSC: Validation tests and the impact of heterogeneous spectroscopic training sets , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  A. Myers,et al.  Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey , 2019, The Astrophysical Journal.

[5]  A. K. Qin,et al.  An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.

[6]  Edinburgh,et al.  The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees , 2019, Astronomy & Astrophysics.

[7]  C. Heymans,et al.  LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  S. Driver,et al.  GAMA/G10-COSMOS/3D-HST: Evolution of the galaxy stellar mass function over 12.5 Gyr , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  A. Hopkins The Dawes Review 8: Measuring the Stellar Initial Mass Function , 2018, Publications of the Astronomical Society of Australia.

[10]  A. Hopkins,et al.  Testing Convolutional Neural Networks for finding strong gravitational lenses in KiDS , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  R. Nichol,et al.  A precise extragalactic test of General Relativity , 2018, Science.

[12]  L. Moustakas,et al.  Beyond subhalos: Probing the collective effect of the Universe’s small-scale structure with gravitational lensing , 2018, Physical Review D.

[13]  S. Belli,et al.  Resolving Quiescent Galaxies at z ≳ 2. I. Search for Gravitationally Lensed Sources and Characterization of Their Structure, Stellar Populations, and Line Emission , 2018, The Astrophysical Journal.

[14]  J. Lucey,et al.  A new strong-lensing galaxy at z= 0.066: another elliptical galaxy with a lightweight IMF , 2018, 1803.07082.

[15]  Kyle W. Willett,et al.  Integrating human and machine intelligence in galaxy morphology classification tasks , 2018, 1802.08713.

[16]  A. Bolton,et al.  The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses , 2017, 1711.00072.

[17]  Liverpool John Moores University,et al.  Galaxy and mass assembly (GAMA): The consistency of GAMA and WISE derived mass-to-light ratios , 2017, 1709.08316.

[18]  J. Lucey,et al.  Improved mass constraints for two nearby strong-lensing elliptical galaxies from Hubble Space Telescope imaging , 2017, 1709.01931.

[19]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[20]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[21]  E. Valentijn,et al.  Testing Verlinde's emergent gravity in early-type galaxies , 2017, 1702.08865.

[22]  E. Verlinde Emergent Gravity and the Dark Universe , 2016, 1611.02269.

[23]  J. Kneib,et al.  Molecular gas properties of a lensed star-forming galaxy at z 3.6: a case study , 2016, 1610.08065.

[24]  A. Zitrin STRONG LENSING ANALYSIS OF THE GALAXY CLUSTER MACS J1319.9+7003 AND THE DISCOVERY OF A SHELL GALAXY , 2016, 1608.08181.

[25]  D. Fabricant,et al.  THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7 , 2016, 1607.04275.

[26]  T. Broadhurst,et al.  STRONG-LENSING ANALYSIS OF THE POWERFUL LENSING CLUSTER MACS J2135.2-0102 (z = 0.33) , 2016, 1607.02119.

[27]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.

[28]  Philip J. Tait,et al.  GALAXY-SCALE GRAVITATIONAL LENS CANDIDATES FROM THE HYPER SUPRIME-CAM IMAGING SURVEY AND THE GALAXY AND MASS ASSEMBLY SPECTROSCOPIC SURVEY , 2016, 1604.08215.

[29]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. III. STRONG LENSING OF Lyα EMITTERS BY INDIVIDUAL GALAXIES , 2016, 1604.01842.

[30]  Michael J. Kurtz,et al.  SHELS: COMPLETE REDSHIFT SURVEYS OF TWO WIDELY SEPARATED FIELDS , 2016, 1603.06885.

[31]  S. M. Fall,et al.  VERSION 1 OF THE HUBBLE SOURCE CATALOG , 2015, 1602.04861.

[32]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[33]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[34]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[35]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA) blended spectra catalogue: strong galaxy-galaxy lens and occulting galaxy pair candidates , 2015, 1503.04813.

[36]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[37]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8 , 2014, 1410.1881.

[38]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES , 2014, 1407.2240.

[39]  Michael J. Kurtz,et al.  SHELS: A COMPLETE GALAXY REDSHIFT SURVEY WITH R ⩽ 20.6 , 2014, 1405.7704.

[40]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors. , 2014, 1404.2626.

[41]  P. Marshall,et al.  RingFinder: AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN GROUND-BASED MULTI-FILTER IMAGING DATA , 2014, 1403.1041.

[42]  A. Hopkins,et al.  GALAXY AND MASS ASSEMBLY (GAMA): MID-INFRARED PROPERTIES AND EMPIRICAL RELATIONS FROM WISE , 2014, 1401.0837.

[43]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[44]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[45]  A. Bolton,et al.  QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES , 2012, 1202.5090.

[46]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[47]  W. M. Wood-Vasey,et al.  THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT ∼0.5 , 2011, 1112.3683.

[48]  Ivan K. Baldry,et al.  Galaxy And Mass Assembly (GAMA): Structural Investigation of Galaxies via Model Analysis , 2011, 1112.1956.

[49]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[50]  S. Bamford,et al.  Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.

[51]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses - IV. The complete VLT-VIMOS data set ⋆ , 2011, 1108.0577.

[52]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[53]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 , 2011, 1102.2261.

[54]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[55]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.

[56]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[57]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): Optimal Tiling of Dense Surveys with a Multi-Object Spectrograph , 2009, Publications of the Astronomical Society of Australia.

[58]  S. Bamford,et al.  GAMA: towards a physical understanding of galaxy formation , 2009, 0910.5123.

[59]  J. Kneib,et al.  Strong lensing as a probe of the mass distribution beyond the Einstein radius: Mass and light in SL2S J08544-0121, a galaxy group at z = 0.35 , 2009, 0906.4118.

[60]  Y. Mellier,et al.  A New Window of Exploration in the Mass Spectrum: Strong Lensing by Galaxy Groups in the SL2S , 2008, 0812.1033.

[61]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[62]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[63]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .

[64]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[65]  A. Bolton,et al.  The Sloan Lens ACS Survey. VI. Discovery and Analysis of a Double Einstein Ring , 2008, 0801.1555.

[66]  P. Schneider,et al.  Strong-lensing optical depths in a ΛCDM universe – II. The influence of the stellar mass in galaxies , 2007, astro-ph/0703803.

[67]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[68]  L. Kewley,et al.  Infrared Properties of Close Pairs of Galaxies , 2006, astro-ph/0608060.

[69]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[70]  A. Bolton,et al.  The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early-Type Lens Galaxies , 2005, astro-ph/0512044.

[71]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[72]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[73]  J. Brinkmann,et al.  Sloan Digital Sky Survey Spectroscopic Lens Search. I. Discovery of Intermediate-Redshift Star-forming Galaxies behind Foreground Luminous Red Galaxies , 2003, astro-ph/0311055.

[74]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[75]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[76]  D. Calzetti,et al.  The Evolution of Dust Opacity in Galaxies , 1998, astro-ph/9811099.

[77]  C. Lintott,et al.  The Frequency of Dust Lanes in Edge-on Spiral Galaxies Identified by Galaxy Zoo in KiDS Imaging of GAMA Targets , 2019 .

[78]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2018 .

[79]  A. Hopkins,et al.  Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .

[80]  A. Bolton,et al.  THE SLACS SURVEY. VIII. THE RELATION BETWEEN ENVIRONMENT AND INTERNAL STRUCTURE OF EARLY-TYPE GALAXIES , 2008 .