FUNCTIONAL ANALYSIS FROM VISUAL AND NON-VISUAL DATA . AN ARTIFICIAL INTELLIGENCE APPROACH

Why archaeological artefacts are the way they are? In this paper we try to solve such a question by investigating the relationship between form and function. We propose new ways of studying the way behaviour in the past can be asserted on the examination of archaeological observables in the present. In any case, we take into account that there are also non-visual features characterizing ancient objects and materials (i.e., compositional information based on mass spectrometry data, chronological information based on radioactive decay measurements, etc.). Information that should make us aware of many functional properties of objects is multidimensional in nature: size, which makes reference to height, length, depth, weight and mass; shape and form, which make reference to the geometry of contours and volumes; texture, which refers to the microtopography (roughness, waviness, and lay) and visual appearance (colour variations, brightness, reflectivity and transparency) of surfaces; and finally material, meaning the combining of distinct compositional elements and properties to form a whole. With the exception of material data, the other relevant aspects for functional reasoning have been traditionally described in rather ambiguous terms, without taking into account the advantages of quantitative measurements of shape/form, and texture. Reasoning about the functionality of archaeological objects recovered at the archaeological site requires a cross-disciplinary investigation, which may also range from recognition techniques used in computer vision and robotics to reasoning, representation, and learning methods in artificial intelligence. The approach we adopt here is to follow current computational theories of object perception to ameliorate the way archaeology can deal with the explanation of human behaviour in the past (function) from the analysis of visual and non-visual data, taking into account that visual appearances and even compositional characteristics only constrain the way an object may be used, but never fully determine it. FUNCTIONAL ANALYSIS FROM VISUAL AND NON-VISUAL DATA. AN ARTIFICIAL INTELLIGENCE APPROACH J.A. Barceló, V. Moitinho de Almeida Universitat Autònoma de Barcelona, Dept. of Prehistory, Quantitative Archaeology Lab, Edifici B Facultat de Filosofia i Lletres 08193 Bellaterra (Barcelona), Spain Corresponding author: juanantonio.barcelo@uab.es Received: 3/8/2012 Accepted: 21/11/2012

[1]  A. Jones,et al.  Archaeometry and materiality: materials-based analysis in theory and practice* , 2004 .

[2]  E. Bribiesca A measure of compactness for 3D shapes , 2000 .

[3]  M. Hegarty Mechanical reasoning by mental simulation , 2004, Trends in Cognitive Sciences.

[4]  L. C. Ludeman,et al.  Shift and rotation invariant texture recognition with neural nets , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[5]  Dejan V. Vranic DESIRE: a composite 3D-shape descriptor , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[6]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[7]  S. Lacey,et al.  Vision and Touch: Multiple or Multisensory Representations of Objects? , 2007, Perception.

[8]  D. L. Macadam Color Measurement: Theme and Variations , 1981 .

[9]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[10]  Roger Grace,et al.  Interpreting the function of stone tools : the quantification and computerisation of microwear analysis , 1989 .

[11]  Evangelos Triantaphyllou,et al.  Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques , 2009 .

[12]  Emilio Del Moral Hernandez,et al.  Neural network applied to elemental archaeological Marajoara ceramic compositions , 2009 .

[13]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[14]  Marc-Michel Corsini,et al.  Aging process variability on the human skeleton: artificial network as an appropriate tool for age at death assessment. , 2005, Forensic science international.

[15]  M. Kadar,et al.  Artificial Neural Networks Used in Forms Recognition of the Properties of Ancient Copper Based Alloys , 2012 .

[16]  H. Wadell,et al.  Volume, Shape, and Roundness of Quartz Particles , 1935, The Journal of Geology.

[17]  Hooshang Heshmat Tribology of Interface Layers , 2010 .

[18]  P. Wiessner Style and Social Information in Kalahari San Projectile Points , 1983, American Antiquity.

[19]  M. Chantler,et al.  Capture and Synthesis of 3D Surface Texture , 2004, International Journal of Computer Vision.

[20]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[21]  R. Hunt Colour Science : Concepts and Methods, Quantitative Data and Formulas , 1968 .

[22]  Lawrence Birnbaum,et al.  Causal Scene Understanding , 1995, Comput. Vis. Image Underst..

[23]  Nathan Intrator,et al.  Towards structural systematicity in distributed, statically bound visual representations , 2003, Cogn. Sci..

[24]  Hans Kamermans An Archaeofaunal Ageing Comparative Study into the Performance of Human Analysis Versus Hybrid Neural Network Analysis , 1996 .

[25]  Ernest Davis,et al.  Representations of commonsense knowledge , 2014, notThenot Morgan Kaufmann series in representation and reasoning.

[26]  Xianghua Xie,et al.  Handbook of Texture Analysis , 2008 .

[27]  Nathan Intrator,et al.  Visual Processing of Object Structure , 2002 .

[28]  Jean-Michel Morel,et al.  A Theory of Shape Identification , 2008 .

[29]  Andrew Hudson,et al.  Shape and form in plants and fungi , 1994 .

[30]  C. Renfrew,et al.  Cognitive Life of Things: Recasting the Boundaries of the Mind , 2010 .

[31]  Azriel Rosenfeld,et al.  Recognition by Functional Parts , 1995, Comput. Vis. Image Underst..

[32]  E. S. C. Schou R. Schlader Lohse,et al.  Automated Classification of Stone Projectile Points in a Neural Network , 2004 .

[33]  Ruth Garrett Millikan,et al.  Wings, Spoons, Pills, and Quills: A Pluralist Theory of Function , 1999 .

[34]  Ehud Rivlin,et al.  Function-Based Classification from 3D Data via Generic and Symbolic Models , 2005, AAAI.

[35]  M. Turvey Affordances and Prospective Control: An Outline of the Ontology , 1992 .

[36]  F. Fueten A computer-controlled rotating polarizer stage for the petrographic microscope , 1997 .

[37]  Ehud Rivlin,et al.  Function From Motion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Vera Moitinho de Almeida,et al.  Reverse Engineering Archaeological Artefacts , 2011 .

[39]  Pat Langley,et al.  Elements of Machine Learning , 1995 .

[40]  Irving Biederman,et al.  Visual object recognition , 1993 .

[41]  Karol Grudzinski,et al.  The Analysis of the Unlabeled Samples of the Iron Age Glass Data , 2005, Intelligent Information Systems.

[42]  William Ribarsky,et al.  Punctuated simplification of man-made objects , 2005, The Visual Computer.

[43]  E. Rivlin,et al.  Object classification by functional parts , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[44]  Sergio E Chaigneau,et al.  Assessing the causal structure of function. , 2004, Journal of experimental psychology. General.

[45]  Patrick Langdon,et al.  An approach to compositional synthesis of mechanical design concepts using computers , 2002 .

[46]  T. R. Wilson,et al.  Strength and Related Properties of Woods Grown in the United States , 1935 .

[47]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1988, IJCAI 1989.

[48]  Tetsuo Tomiyama,et al.  Functional Reasoning in Design , 1997, IEEE Expert.

[49]  Kristin J. Dana,et al.  3D Texture Recognition Using Bidirectional Feature Histograms , 2004, International Journal of Computer Vision.

[50]  Richard M. Friedhoff,et al.  Visualization - the second computer revolution , 1988 .

[51]  Kiran Jude Fernandes,et al.  Reverse Engineering: An Industrial Perspective , 2007 .

[52]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[53]  Andrew R. H. Swan,et al.  Image analysis of petrographic textures and fabrics using semivariance , 1995, Mineralogical Magazine.

[54]  Robert J. Rovetto,et al.  The Shape of Shapes: An Ontological Exploration , 2011, SHAPES.

[55]  Zenya Koono,et al.  Functional Reasoning , Explanation and Analysis : A Collective View and A Proposal , 1993 .

[56]  Eldad Eilam,et al.  Reversing: Secrets of Reverse Engineering , 2005 .

[57]  MA Qing-lin Application of EDXRF and artificial neural networks to provenance studies of the archaeological pottery sherds during Neolithic Age in Gansu Province, China , 2003 .

[58]  Mauro R. Ruggeri,et al.  Isometry-invariant Matching of Point Set Surfaces , 2008, 3DOR@Eurographics.

[59]  J. Bonnet Towards a formal representation of device functionality , 1992 .

[60]  Eamonn J. Keogh,et al.  Automatic Construction of Typologies for Massive Collections of Projectile Points , 2010 .

[61]  Teuvo Kohonen,et al.  Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.

[62]  Tetsuo Tomiyama,et al.  A review of function modeling: Approaches and applications , 2008, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[63]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[64]  B. Russell,et al.  Problems Of Philosophy , 2004, Synthese.

[65]  Wego Wang,et al.  Reverse Engineering: Technology of Reinvention , 2010 .

[66]  Hans-Peter Kriegel,et al.  3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.

[67]  L. C. Ludeman,et al.  Neural nets for determination of texture and its orientation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[68]  A. Lopez-Molinero,et al.  Classification of ancient Roman glazed ceramics using the neural network of Self-Organizing Maps , 2000, Fresenius' journal of analytical chemistry.

[69]  C. Small The statistical theory of shape , 1996 .

[70]  Thomas R. Hester,et al.  Lithic use-wear analysis , 1982, American Antiquity.

[71]  Singiresu S. Rao The finite element method in engineering , 1982 .

[72]  Michael G. Strintzis,et al.  Ellipsoidal Harmonics for 3-D Shape Description and Retrieval , 2009, IEEE Transactions on Multimedia.

[73]  Vassilis Kilikoglou,et al.  MECHANICAL PERFORMANCE OF QUARTZ‐TEMPERED CERAMICS: PART I, STRENGTH AND TOUGHNESS* , 1998 .

[74]  Ergun Bicici,et al.  Reasoning About the Functionality of Tools and Physical Artifacts , 2003 .

[75]  Chandraratne,et al.  DETERMINATION OF LAMB GRADES USING TEXTURE ANALYSIS AND NEURAL NETWORKS , 2003 .

[76]  David G. Stork,et al.  Generic object recognition using form and function , 1998, Pattern Analysis and Applications.

[77]  Riichiro Mizoguchi,et al.  An Ontology of Functional Concepts of Artifacts , 1999 .

[78]  R. Lark Geostatistical description of texture on an aerial photograph for discriminating classes of land cover , 1996 .

[79]  Kohonen Networks Applied to Rincón del Toro Rock Art Site Analysis , 2012 .

[80]  O. Engler,et al.  Introduction to texture analysis : macrotexture, microtexture and orientation mapping , 2000 .

[81]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[82]  Fabrice Druaux,et al.  Multiscale Roughness Analysis of Particles: Application to the Classification of Detrital Sediments , 2003 .

[83]  P. Fermo,et al.  Classification of ancient Etruscan ceramics using statistical multivariate analysis of data , 2004 .

[84]  Ian Hodder,et al.  Style and changing relations between the individual and society , 2013 .

[85]  Hsu-Pin Wang,et al.  Automated generation of assembly sequence based on geometric and functional reasoning , 1993, J. Intell. Manuf..

[86]  Carles Barceló-Vidal Mathematical Foundations of Compositional Data Analysis , 2001 .

[87]  Mike Baxter,et al.  A REVIEW OF SUPERVISED AND UNSUPERVISED PATTERN RECOGNITION IN ARCHAEOMETRY , 2006 .

[88]  J. T. Madsen Andresen,et al.  The Potentials of Hybrid Neural Network Models for Archaeofaunal Ageing and Interpretation , 1993 .

[89]  Andrea Salgian,et al.  A cubist approach to object recognition , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[90]  Ernest Davis The kinematics of cutting solid objects , 2005, Annals of Mathematics and Artificial Intelligence.

[91]  Steven A. Sloman,et al.  The HIPE Theory of Function , 2005, Functional Features in Language and Space.

[92]  Cameron Shelley,et al.  Visual Abductive Reasoning in Archaeology , 1996, Philosophy of Science.

[93]  Anil K. Jain,et al.  Learning Texture Discrimination Masks , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  D Leverington,et al.  Principles of Colour Technology , 1967 .

[95]  Siti Mariyam Hj. Shamsuddin,et al.  3D object reconstruction and representation using neural networks , 2004, GRAPHITE '04.

[96]  Marc Rioux,et al.  Description of shape information for 2-D and 3-D objects , 2000, Signal Process. Image Commun..

[97]  Titus B. Zaharia,et al.  Descripteurs de forme pour l'indexation de maillages 3D , 2003, Tech. Sci. Informatiques.

[98]  I. Biederman In: An invitation to cognitive science , 2003 .

[99]  Juan Barceló,et al.  Computational Intelligence in Archaeology , 2008 .

[100]  Siegfried Siegesmund,et al.  Stone in Architecture: Properties, Durability , 2011 .

[101]  M. S. Tite,et al.  Strength, Toughness and Thermal Shock Resistance of Ancient Ceramics, and Their Influence on Technological Choice , 2001 .

[102]  Véra Eisenmann,et al.  145.Geometric morphometrics and the population diversity of Late Glacial horses in Western Europe (Equus caballus arcelini) : phylogeographic and anthropological implications. , 2005 .

[103]  S. Camiz,et al.  Unsupervised and Supervised Classifications of Egyptian Scarabs Based on the Qualitative Characters of Typology , 2008 .

[104]  Cungen Cao,et al.  A Domain-Specific Formal Ontology for Archaeological Knowledge Sharing and Reusing , 2002, PAKM.

[105]  Laurens van der Maaten,et al.  COIN-O-MATIC: A fast system for reliable coin classification , 2006 .

[106]  Ingvar Johansson,et al.  Functions and Shapes in the Light of the International System of Units , 2008 .

[107]  F. Rohlf,et al.  Geometric morphometrics: Ten years of progress following the ‘revolution’ , 2004 .

[108]  Luca Gammaitoni,et al.  Shape is Physical , 2011, SHAPES.

[109]  Heather M.-L. Miller Archaeological Approaches to Technology , 2006 .

[110]  Ignacio Clemente,et al.  Análisis funcional : su aplicación al estudio de sociedades prehistóricas , 2002 .

[111]  Anne Verroust-Blondet,et al.  Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[112]  Tony Atkins,et al.  The science and engineering of cutting : the mechanics and processes of separating and puncturing biomaterials, metals and non-metals , 2008 .

[113]  Fausto Giunchiglia,et al.  FUR: Understanding functional reasoning , 1989, Int. J. Intell. Syst..

[114]  Nam-Ho Kim Introduction to Nonlinear Finite Element Analysis , 2014 .

[115]  John Fulcher Neural networks for archaeological provenancing , 1997 .

[116]  K. Fischer-Ausserer,et al.  Cutting or Scrapping? Using Neural Networks to Distinguish Kinematics in Use-Wear Analysis , 2004 .

[117]  Svetha Venkatesh,et al.  Object labelling from human action recognition , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[118]  D. Hoekman,et al.  Review of relationships between grey-tone co-occurrence, semivariance, and autocorrelation based image texture analysis approaches , 2005 .

[119]  G. Goldenberg,et al.  The neural basis of tool use. , 2009, Brain : a journal of neurology.

[120]  John Aitchison,et al.  Principles of compositional data analysis , 1994 .

[121]  P. Guttorp,et al.  Statistical Analysis and Interpretation of Discrete Compositional Data , 1998 .

[122]  Karthik Ramani,et al.  Shape-based clustering for 3D CAD objects: A comparative study of effectiveness , 2009, Comput. Aided Des..

[123]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[124]  Jordi Pijoan-López,et al.  Quantificació de traces d'ús en instruments lítics mitjançant imatges digitalitzades: Resultats d'experiments amb Xarxes Neurals i Estadística , 2007 .

[125]  Christopher Boorse Wright on Functions , 1976 .

[126]  J. Hodges,et al.  When objects lose their meaning: What happens to their use? , 2002, Cognitive, affective & behavioral neuroscience.

[127]  B. Beck Animal Tool Behavior , 1980 .

[128]  Robert Cummins,et al.  ‘How does it Work?’ vs. ‘What are the Laws?’ , 2010 .

[129]  S. Greenberg,et al.  The Psychology of Everyday Things , 2012 .

[130]  R. Cummins,et al.  Functions: New Essays in the Philosophy of Psychology and Biology , 2002 .

[131]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[132]  Robert St. Amant A preliminary discussion of tools and tool use , 2002 .

[133]  Johan Kamminga,et al.  Mechanics of pre-industrial technology : an introduction to the mechanics of ancient and traditional material culture , 1992 .

[134]  Shu-Kun Lin,et al.  Shape and Structure, from Engineering to Nature , 2001, Entropy.

[135]  Robert A. Kowalski,et al.  Computational Logic and Human Thinking: How to Be Artificially Intelligent , 2011 .

[136]  Fred Adams,et al.  A Goal-State Theory of Function Attributions , 1979, Canadian Journal of Philosophy.

[137]  M. Leyton Symmetry, Causality, Mind , 1999 .

[138]  Erol Tutumluer,et al.  Test Methods for Characterizing Aggregate Shape, Texture, and Angularity , 2005 .

[139]  P. Thagard,et al.  Computational Philosophy of Science , 1988 .

[140]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[141]  Robert C. Dunnell,et al.  Style and Function: A Fundamental Dichotomy , 1978, American Antiquity.

[142]  Juan José Ibáñez-Estévez,et al.  The Quantification of Use-Wear Polish Using Image Analysis. First Results , 2003 .

[143]  Mike Baxter,et al.  An R Library for Compositional Data Analysis in Archaeometry , 2005 .

[144]  A. Chemero An Outline of a Theory of Affordances , 2003, How Shall Affordances be Refined? Four Perspectives.

[145]  Heather J. Hopkins,et al.  Using Experimental Archaeology to Answer the Unanswerable: A case study using Roman Dyeing , 2008 .

[146]  Amit Singhal,et al.  Computer Vision and Fuzzy-Neural Systems , 2004, J. Electronic Imaging.

[147]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  R. Amant,et al.  Revisiting the definition of animal tool use , 2008, Animal Behaviour.

[149]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[150]  J. Boland,et al.  MECHANICAL PROPERTIES OF STONE ARTEFACT MATERIALS AND THE EFFECT OF HEAT TREATMENT , 1994 .

[151]  Zhide Hu,et al.  Principal component analysis and artificial neural networks applied to the classification of Chinese pottery of neolithic age , 2000 .

[152]  Anne Verroust-Blondet,et al.  3D Model Retrieval Based on Depth Line Descriptor , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[153]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[154]  Masayuki Nakajima,et al.  Spherical Wavelet Descriptors for Content-based 3D Model Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[155]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[156]  J. J. Paijmans,et al.  Computer vision and machine learning for archaeology , 2006 .

[157]  Maurizio Petrelli,et al.  Determination of travertine provenance from ancient buildings using self-organizing maps and fuzzy logic , 2003, Appl. Artif. Intell..

[158]  Alan K. Outram,et al.  Introduction to experimental archaeology , 2008 .

[159]  Sushil Bhakar,et al.  Textiles, Patterns and Technology: Digital Tools for the Geometric Analysis of Cloth and Culture , 2004 .

[160]  David J. Whitehouse,et al.  Handbook of Surface Metrology , 2023 .

[161]  Xiaoping Hu,et al.  Object familiarity modulates effective connectivity during haptic shape perception , 2010, NeuroImage.

[162]  Eyke Hüllermeier,et al.  Case-Based Approximate Reasoning (Theory and Decision Library B) , 2007 .

[163]  D. Asahina,et al.  Geometry of irregular particles: Direct surface measurements by 3-D laser scanner , 2011 .

[164]  Roddy MacLeod,et al.  Coarse Filters for Shape Matching , 2002, IEEE Computer Graphics and Applications.

[165]  Riichiro Mizoguchi,et al.  Ontology-based systematization of functional knowledge , 2004 .

[166]  Svetha Venkatesh,et al.  Tracking-as-Recognition for Articulated Full-Body Human Motion Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[167]  Teresa D. Hurt,et al.  Style and Function , 2000 .

[168]  D. Dennett The Intentional Stance. , 1987 .

[169]  Ariel Shamir,et al.  Pose-Oblivious Shape Signature , 2007, IEEE Transactions on Visualization and Computer Graphics.

[170]  Dmitry B. Goldgof,et al.  Recognizing object function through reasoning about partial shape descriptions and dynamic physical properties , 1996, Proc. IEEE.

[171]  Juan A. Barceló Visual Analysis in Archaeology. An Artificial Intelligence Approach , 2010 .

[172]  Tsuhan Chen,et al.  Efficient feature extraction for 2D/3D objects in mesh representation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[173]  Lucia M. Vaina,et al.  From object structure to object function , 1991, Defense, Security, and Sensing.

[174]  Roger Phillips,et al.  Virtual Functional Morphology: Novel Approaches to the Study of Craniofacial Form and Function , 2012, Evolutionary Biology.

[175]  Daniel C. Dennett,et al.  Cognitive science as reverse engineering several meanings of “Top-down” and “Bottom-up” , 1995 .

[176]  George Pavlidis,et al.  3D Pottery content-based retrieval based on pose normalisation and segmentation , 2010 .

[177]  Tod S. Levitt,et al.  Evidential Reasoning for Object Recognition , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[178]  Svetha Venkatesh,et al.  Robust Recognition and Segmentation of Human Actions Using HMMs with Missing Observations , 2005, EURASIP J. Adv. Signal Process..

[179]  H. C. Chen,et al.  Identification of lithofacies using Kohonen self-organizing maps , 2002 .

[180]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[181]  Matthew Brand,et al.  Physics-Based Visual Understanding , 1997, Comput. Vis. Image Underst..

[182]  Roberto Tagliaferri,et al.  Textural identification of carbonate rocks by image processing and neural network: Methodology proposal and examples , 2005, Comput. Geosci..

[183]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[184]  Javier Ruiz-del-Solar,et al.  TEXSOM: Texture segmentation using self-organizing maps , 1998, Neurocomputing.

[185]  Bansilal,et al.  Hybrid neural network architecture for age identification of ancient Kannada scripts , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[186]  Brian Hayden Lithic studies among the contemporary highland Maya , 1987 .

[187]  Vera Moitinho,et al.  Understanding Virtual Objects through Reverse Engineering , 2012 .

[188]  P. Richerson,et al.  Style, Function, and Cultural Evolutionary Processes , 1996 .

[189]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[190]  Peter A. Flach,et al.  Machine Learning - The Art and Science of Algorithms that Make Sense of Data , 2012 .

[191]  Susan C. Kuzminsky,et al.  Three-dimensional laser scanning: potential uses for museum conservation and scientific research , 2012 .

[192]  Christian Van den Broeck,et al.  Statistical Mechanics of Learning , 2001 .

[193]  Jovisa D. Zunic,et al.  Measuring Cubeness of 3D Shapes , 2009, CIARP.

[195]  Lewis R. Binford,et al.  Styles of style , 1989 .

[196]  Juan A. Barceló Computational Intelligence in Archaeology. A State-of-the Art. , 2009 .

[197]  Robert Sablatnig,et al.  Scientific Puzzle Solving: Current Techniques and Applications , 2009 .

[198]  Naiqian Zhang,et al.  Determining Wheat Vitreousness Using Image Processing and a Neural Network , 2002 .

[199]  Ingvar Johansson Shape is a Non-Quantifiable Physical Dimension , 2011, SHAPES.

[200]  Michael Pointer,et al.  Measurement of appearance , 2002, Other Conferences.

[201]  Ping Li,et al.  Pollen texture identification using neural networks , 1999 .

[202]  Frederic Fol Leymarie,et al.  On the Visual Perception of Shape - Analysis and Genesis through Information Models , 2011, SHAPES.

[203]  Jack Hodges Functional and Physical Object Characteristics and Object Recognition in Improvisation , 1995, Comput. Vis. Image Underst..

[204]  Karen Neander,et al.  The teleological notion of ‘function’ , 1991 .

[205]  M. W. Thompson,et al.  Prehistoric technology : an experimental study of the oldest tools and artefacts from traces of manufacture and wear , 1970 .

[206]  R Todeschini,et al.  Application of the Kohonen artificial neural network in the identification of proteinaceous binders in samples of panel painting using gas chromatography-mass spectrometry. , 2003, The Analyst.

[207]  Michael B. Schiffer,et al.  Theory and Experiment in the Study of Technological Change , 1987, Current Anthropology.

[208]  Marcin Novotni,et al.  3D zernike descriptors for content based shape retrieval , 2003, SM '03.

[209]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[210]  G. Burenhult Pattern Recognition Applied to Rock Art , 2002 .

[211]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[212]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[213]  F. Fueten,et al.  Mineral identification using artificial neural networks and the rotating polarizer stage , 2001 .

[214]  Michal Strzelecki,et al.  MaZda - A software package for image texture analysis , 2009, Comput. Methods Programs Biomed..

[215]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[216]  Pieter E. Vermaas,et al.  Ascribing Functions to Technical Artefacts: A Challenge to Etiological Accounts of Functions , 2003, The British Journal for the Philosophy of Science.

[217]  Norbert F. M. Roozenburg,et al.  Defining synthesis: on the senses and the logic of design synthesis , 2002 .

[218]  I BrianHayden Practical and Prestige Technologies: The Evolution of Material Systems , 1998 .

[219]  Paul L. Rosin,et al.  Rectilinearity of 3D Meshes , 2009, International Journal of Computer Vision.

[220]  Y. V. Venkatesh,et al.  Multiple contour extraction from graylevel images using an artificial neural network , 2006, IEEE Transactions on Image Processing.

[221]  Vassilis Kilikoglou,et al.  Failure Prediction and Function Determination of Archaeological Pottery by Finite Element Analysis , 2002 .

[222]  L. J. Markwardt,et al.  Comparative strength properties of woods grown in the United States , 1930 .

[223]  S. Bell,et al.  Artificial neural networks as a tool for archaeological data analysis , 1998 .

[224]  Roberto Gil-Pita,et al.  Using Neural Networks to Detect Microfossil Teeth in Somosaguas Sur Paleontological Site , 2006, IDEAL.

[225]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[226]  Luis-Manuel Tomás-Balibrea,et al.  Automatic system for quality-based classification of marble textures , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[227]  Antonio Adán,et al.  Using Non Local Features for 3D Shape Grouping , 2008, SSPR/SPR.

[228]  Rob W. Parrott,et al.  Using kriging for 3D medical imaging. , 1993, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[229]  Michael B. Schiffer Comments II: Properties, Performance Characteristics, and Behavioural Theory in the Study of Technology , 2003 .

[230]  P. Jeffrey Brantingham,et al.  A Unified Evolutionary Model of Archaeological Style and Function Based on the Price Equation , 2007, American Antiquity.

[231]  Jouko Lampinen,et al.  Shape analysis of concrete aggregates for statistical quality modeling , 2004, Machine Vision and Applications.

[232]  P. Gunz,et al.  Geometric Morphometrics , 2019, Archaeological Science.

[233]  J Aitchison,et al.  The one-hour course in compositional data analysis or compositional data analysis is simple , 1997 .

[234]  Alfredo Coppa,et al.  Evidence for new Neanderthal teeth in Tabun Cave (Israel) by the application of self-organizing maps (SOMs). , 2007, Journal of human evolution.

[235]  Ruzena Bajcsy,et al.  Identification of functional features through observations and interactions , 1995 .

[236]  Frank Fueten,et al.  An experimental setup for the analysis of analogue deformation experiments using the rotating polariser stage , 2002 .

[237]  Norbert Marwan,et al.  3D MEASURES OF COMPLEXITY FOR THE ASSESSMENT OF COMPLEX TRABECULAR BONE STRUCTURES , 2004 .