On conformal metrics of constant positive curvature in the plane

We prove three theorems about solutions of ∆ u + e 2 u = 0 in the plane. The first two describe explicitly all concave and quasiconcave solutions. The third theorem says that the diameter of the plane with respect to the metric with line element e u | dz | is at least 4 π/ 3, except for two explicitly described families of solutions u . 2010 MSC 35B99

[1]  C. Gui,et al.  Some geometric inequalities related to Liouville equation , 2022, Mathematische Zeitschrift.

[2]  J. Langley Bank–Laine functions, the Liouville transformation and the Eremenko–Lyubich class , 2018, Journal d'Analyse Mathématique.

[3]  A. Eremenko Metrics of constant positive curvature with conic singularities. A survey , 2021, 2103.13364.

[4]  Philipp Nadel,et al.  Ordinary Differential Equations In The Complex Domain , 2016 .

[5]  Changshou Lin,et al.  Mean field equations, hyperelliptic curves and modular forms: I , 2015, 1502.03297.

[6]  J. Langley The Schwarzian derivative and the Wiman-Valiron property , 2013, 1307.3042.

[7]  Jian-Hua Zheng,et al.  Value distribution of meromorphic functions , 2011 .

[8]  A. Fletcher On Bank-Laine Functions , 2009 .

[9]  A. Eremenko Geometric theory of meromorphic functions , 2021, 2110.07669.

[10]  Walter Bergweiler,et al.  On the singularities of the inverse to a meromorphic function of finite order , 1995 .

[11]  J. Langley Proof of a Conjecture of Hayman Concerning f and f , 1993 .

[12]  W. Hayman The Local Growth of Power Series: A Survey of the Wiman-Valiron Method , 1974, Canadian Mathematical Bulletin.

[13]  P. Robba Fonctions analytiques , 1970, Mathématiques.

[14]  M. Heins ASYMPTOTIC SPOTS OF ENTIRE AND MEROMORPHIC FUNCTIONS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[15]  F. Minding Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmaaße. , 1839 .