Work-Efficient Batch-Incremental Minimum Spanning Trees with Applications to the Sliding-Window Model

Algorithms for dynamically maintaining minimum spanning trees (MSTs) have received much attention in both the parallel and sequential settings. While previous work has given optimal algorithms for dense graphs, all existing parallel batch-dynamic algorithms perform polynomial work per update in the worst case for sparse graphs. In this paper, we present the first work-efficient parallel batch-dynamic algorithm for incremental MST, which can insert l edges in O(l log(1+n/l) work in expectation and O(polylog(n)) span w.h.p. The key ingredient of our algorithm is an algorithm for constructing a compressed path tree of an edge-weighted tree, which is a smaller tree that contains all pairwise heaviest edges between a given set of marked vertices. Using our batch-incremental MST algorithm, we demonstrate a range of applications that become efficiently solvable in parallel in the sliding-window model, such as graph connectivity, approximate MSTs, testing bipartiteness, k-certificates, cycle-freeness, and maintaining sparsifiers.

[1]  Paolo Ferragina An EREW PRAM fully-dynamic algorithm for MST , 1995, Proceedings of 9th International Parallel Processing Symposium.

[2]  A. Pan,et al.  On Finding and Updating Spanning Trees and Shortest Paths , 1975, SIAM J. Comput..

[3]  I. V. Ramakrishnan,et al.  An O(log n) Algorithm for Parallel Update of Minimum Spanning Trees , 1986, Inf. Process. Lett..

[4]  Sajal K. Das,et al.  An o(n) Work EREW Parallel Algorithm for Updating MST , 1994, ESA.

[5]  Bernard Chazelle,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[6]  Sajal K. Das,et al.  An EREW PRAM Algorithm for Updating Minimum Spanning Trees , 1999, Parallel Process. Lett..

[7]  J. Reif,et al.  Parallel Tree Contraction Part 1: Fundamentals , 1989, Adv. Comput. Res..

[8]  Fabrizio Luccio,et al.  Batch Dynamic Algorithms for Two Graph Problems , 1994, PARLE.

[9]  Paolo Ferragina A Technique to Speed Up Parallel Fully Dynamic Algorithms for MST , 1995, J. Parallel Distributed Comput..

[10]  Kun-Lung Wu,et al.  Work-Efficient Parallel Union-Find with Applications to Incremental Graph Connectivity , 2016, Euro-Par.

[11]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[12]  Ashish Goel,et al.  Single pass sparsification in the streaming model with edge deletions , 2012, ArXiv.

[13]  Donald B. Johnson,et al.  Optimal algorithms for the vertex updating problem of a minimum spanning tree , 1992, Proceedings Sixth International Parallel Processing Symposium.

[14]  Sudipto Guha,et al.  Analyzing graph structure via linear measurements , 2012, SODA.

[15]  Mikkel Thorup,et al.  Faster Algorithms for Edge Connectivity via Random 2-Out Contractions , 2019, SODA.

[16]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[17]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[18]  Shaunak Pawagi,et al.  A Parallel Algorithm for Multiple Updates of Minimum Spanning Trees , 1989, ICPP.

[19]  Peter J. Varman,et al.  A Parallel Vertex Insertion Algorithm For Minimum Spanning Trees , 1986, ICALP.

[20]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[21]  Mikkel Thorup,et al.  Maintaining information in fully dynamic trees with top trees , 2003, TALG.

[22]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[23]  Andrew McGregor,et al.  Dynamic Graphs in the Sliding-Window Model , 2013, ESA.

[24]  Guy E. Blelloch,et al.  Fast set operations using treaps , 1998, SPAA '98.

[25]  Mikkel Thorup,et al.  Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time , 2018, ACM Trans. Algorithms.

[26]  Barbara Geissmann,et al.  Parallel Minimum Cuts in Near-linear Work and Low Depth , 2018, SPAA.

[27]  Christian Wulff-Nilsen,et al.  Faster Fully-Dynamic Minimum Spanning Forest , 2014, ESA.

[28]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[29]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[30]  Guy E. Blelloch,et al.  Parallel Batch-Dynamic Trees via Change Propagation , 2020, ESA.

[31]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[32]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[33]  Fabrizio Luccio,et al.  Three Techniques for Parallel Maintenance of a Minimum Spanning Tree under Batch of Updates , 1996, Parallel Process. Lett..

[34]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[35]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[36]  Hillel Gazit,et al.  An optimal randomized parallel algorithm for finding connected components in a graph , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[37]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[38]  Guy E. Blelloch,et al.  A Top-Down Parallel Semisort , 2015, SPAA.

[39]  Sajal K. Das,et al.  Parallel Dynamic Algorithms for MinimumSpanning Trees , 2007 .

[40]  Richard Cole,et al.  Finding minimum spanning forests in logarithmic time and linear work using random sampling , 1996, SPAA '96.

[41]  Guy E. Blelloch,et al.  Just Join for Parallel Ordered Sets , 2016, SPAA.

[42]  Guy E. Blelloch,et al.  An Experimental Analysis of Change Propagation in Dynamic Trees , 2005, ALENEX/ANALCO.

[43]  Peter J. Varman,et al.  An Efficient Parallel Algorithm for Updating Minimum Spanning Trees , 1988, Theor. Comput. Sci..

[44]  David P. Woodruff,et al.  Tight Bounds for Graph Problems in Insertion Streams , 2015, APPROX-RANDOM.

[45]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[46]  Guy E. Blelloch,et al.  Batch-dynamic Algorithms via Parallel Change Propagation and Applications to Dynamic Trees , 2020, ArXiv.

[47]  Guy E. Blelloch,et al.  Parallel Batch-Dynamic Graph Connectivity , 2019, SPAA.

[48]  Owen Kaser,et al.  Optimal parallel algorithms for multiple updates of minimum spanning trees , 1993, Algorithmica.

[49]  Debmalya Panigrahi,et al.  A general framework for graph sparsification , 2010, STOC '11.

[50]  Weifa Liang,et al.  A parallel algorithm for multiple edge updates of minimum spanning trees , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[51]  Guy E. Blelloch,et al.  Programming parallel algorithms , 1996, CACM.

[52]  R. Prim Shortest connection networks and some generalizations , 1957 .

[53]  Kurt Mehlhorn,et al.  Parallel Algorithms for Computing Maximal Independent Sets in Trees and for Updating Minimum Spanning Trees , 1988, Inf. Process. Lett..

[54]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[55]  Yung H. Tsin On Handling Vertex Deletion in Updating Spanning Trees , 1988, Inf. Process. Lett..

[56]  Tsvi Kopelowitz,et al.  Improved Worst-Case Deterministic Parallel Dynamic Minimum Spanning Forest , 2018, SPAA.