Mitochondrial free radical generation, oxidative stress, and aging.

[1]  K. Davies,et al.  Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  K. Davies,et al.  Polynucleotide degradation during early stage response to oxidative stress is specific to mitochondria. , 2000, Free radical biology & medicine.

[3]  E. Cadenas,et al.  The Regulation of Mitochondrial Oxygen Uptake by Redox Reactions Involving Nitric Oxide and Ubiquinol* , 1999, The Journal of Biological Chemistry.

[4]  K. Davies The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress , 1999, IUBMB Life - A Journal of the International Union of Biochemistry and Molecular Biology.

[5]  T. Reinheckel,et al.  Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  O. Sommerburg,et al.  Influence of DNA binding on the degradation of oxidized histones by the 20S proteasome. , 1999, Archives of biochemistry and biophysics.

[7]  E. Cadenas,et al.  Reaction of Ubiquinols with Nitric Oxide , 1999 .

[8]  E. Cadenas,et al.  Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide. , 1999, Methods in enzymology.

[9]  K. Davies,et al.  Oxidative stress causes a general, calcium-dependent degradation of mitochondrial polynucleotides. , 1998, Free radical biology & medicine.

[10]  E. Cadenas,et al.  The role of mitochondrial glutathione in DNA base oxidation. , 1998, Biochimica et biophysica acta.

[11]  K. Davies,et al.  Peroxynitrite Increases the Degradation of Aconitase and Other Cellular Proteins by Proteasome* , 1998, The Journal of Biological Chemistry.

[12]  T. Reinheckel,et al.  Degradation of oxidized proteins in mammalian cells , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[13]  K. Davies,et al.  Down-regulation of mammalian mitochondrial RNAs during oxidative stress. , 1997, Free radical biology & medicine.

[14]  K. Davies,et al.  16S mitochondrial ribosomal RNA degradation is associated with apoptosis. , 1997, Free radical biology & medicine.

[15]  E. Cadenas,et al.  The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. , 1996, Archives of biochemistry and biophysics.

[16]  J. Poderoso,et al.  Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. , 1996, Archives of biochemistry and biophysics.

[17]  K. Davies Oxidative stress: the paradox of aerobic life. , 1995, Biochemical Society symposium.

[18]  B. Ames,et al.  Mitochondrial decay in aging. , 1995, Biochimica et biophysica acta.

[19]  R. Schlapbach,et al.  Oxidants in mitochondria: from physiology to diseases. , 1995, Biochimica et biophysica acta.

[20]  L. Möller,et al.  Improvements in the analytical method for 8-hydroxydeoxyguanosine in nuclear DNA. , 1995, Carcinogenesis.

[21]  E. Cadenas,et al.  Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. , 1995, Archives of biochemistry and biophysics.

[22]  S. Fahn,et al.  The oxidant stress hypothesis in Parkinson's disease: Evidence supporting it , 1992, Annals of neurology.

[23]  P. R. Gardner,et al.  Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. , 1992, The Journal of biological chemistry.

[24]  J. Crapo,et al.  Detection of catalase in rat heart mitochondria. , 1991, The Journal of biological chemistry.

[25]  I. Fridovich,et al.  Assay of metabolic superoxide production in Escherichia coli. , 1991, The Journal of biological chemistry.

[26]  P. Di Mascio,et al.  Singlet oxygen induced single-strand breaks in plasmid pBR322 DNA: the enhancing effect of thiols. , 1991, Biochimica et biophysica acta.

[27]  K. Davies,et al.  Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. , 1991, Gerontology.

[28]  K. Davies,et al.  The oxidative inactivation of mitochondrial electron transport chain components and ATPase. , 1990, The Journal of biological chemistry.

[29]  C. Chow Cellular Antioxidant Defense Mechanisms , 2019 .

[30]  K. Davies,et al.  Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. , 1989, The Biochemical journal.

[31]  B. Ames,et al.  Endogenous oxidative DNA damage, aging, and cancer. , 1989, Free radical research communications.

[32]  S. W. Lin,et al.  Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins. , 1988, The Biochemical journal.

[33]  B. Ames,et al.  Normal oxidative damage to mitochondrial and nuclear DNA is extensive. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[34]  O. Koch,et al.  Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia. , 1988, The American journal of physiology.

[35]  K. Davies,et al.  Possible Importance of Proteolytic Systems as Secondary Antioxidant Defenses During Ischemia-Reperfusion Injury , 1988 .

[36]  K. Davies A secondary antioxidant defense role for proteolytic systems. , 1988, Basic life sciences.

[37]  S. W. Lin,et al.  Degradation of oxidatively denatured proteins in Escherichia coli. , 1988, Free radical biology & medicine.

[38]  S. W. Lin,et al.  Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli. , 1988, Free radical biology & medicine.

[39]  W. Prütz,et al.  Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide: kinetics and yield. , 1987, Free radical biology & medicine.

[40]  J. Doroshow,et al.  Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. , 1986, The Journal of biological chemistry.

[41]  J. Doroshow,et al.  Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. , 1986, The Journal of biological chemistry.

[42]  B. Chance,et al.  Reactive oxygen intermediates in biochemistry. , 1986, Annual review of biochemistry.

[43]  J. Doroshow,et al.  Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin. , 1983, Biochemical pharmacology.

[44]  J. Doroshow,et al.  Mitochondrial NADH dehydrogenase‐catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5‐iminodaunorubicin , 1983, FEBS letters.

[45]  G. Cohen The pathobiology of Parkinson's disease: biochemical aspects of dopamine neuron senescence. , 1983, Journal of neural transmission. Supplementum.

[46]  G. Brooks,et al.  Free radicals and tissue damage produced by exercise. , 1982, Biochemical and biophysical research communications.

[47]  K. Davies,et al.  Ubisemiquinone radicals in liver: implications for a mitochondrial Q cycle in vivo. , 1982, Biochemical and biophysical research communications.

[48]  L. Flohé CHAPTER 7 – Glutathione Peroxidase Brought into Focus , 1982 .

[49]  H. Forman,et al.  CHAPTER 3 – Superoxide Radical and Hydrogen Peroxide in Mitochondria , 1982 .

[50]  F. Podo,et al.  Structure of binary complexes of mono- and polynucleotides with metal ions of the first transition group , 1980 .

[51]  B Chance,et al.  Hydroperoxide metabolism in mammalian organs. , 1979, Physiological reviews.

[52]  B. Chance,et al.  Peroxide removal by selenium-dependent and selenium-independent glutathione peroxidases in hemoglobin-free perfused rat liver. , 1978, The Journal of biological chemistry.

[53]  A. Tappel,et al.  Rat liver glutathione peroxidase: purification and study of multiple forms. , 1977, Archives of biochemistry and biophysics.

[54]  E. Cadenas,et al.  Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration , 1975, FEBS letters.

[55]  D. Tyler,et al.  Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. , 1975, The Biochemical journal.

[56]  B Chance,et al.  The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. , 1973, The Biochemical journal.

[57]  B Chance,et al.  The cellular production of hydrogen peroxide. , 1972, The Biochemical journal.

[58]  L. Flohé,et al.  Glutathion-Peroxidase, IV1–3, Intrazelluläre Verteilung des Glutathion-Peroxidase-Systems in der Rattenleber , 1971 .