Horizontal gene transfer in prokaryotes: quantification and classification.

Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis.

[1]  E. Koonin,et al.  Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. , 2001, Genome research.

[2]  E. Koonin,et al.  Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics , 2001, Microbiology and Molecular Biology Reviews.

[3]  J. Davie,et al.  Signal transduction pathways and the modification of chromatin structure. , 2001, Progress in nucleic acid research and molecular biology.

[4]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[5]  Eugene V Koonin,et al.  Interkingdom gene fusions , 2000, Genome Biology.

[6]  H Philippe,et al.  The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. , 2000, Trends in genetics : TIG.

[7]  Dong-Guk Shin,et al.  Horizontal Transfer of Archaeal Genes into the Deinococcaceae: Detection by Molecular and Computer-Based Approaches , 2000, Journal of Molecular Evolution.

[8]  S. V. Van Doren,et al.  The FHA domain mediates phosphoprotein interactions. , 2000, Journal of cell science.

[9]  J. Heitman,et al.  Signal Transduction Cascades Regulating Fungal Development and Virulence , 2000, Microbiology and Molecular Biology Reviews.

[10]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in bacterial and archaeal complete genomes. , 2000, Genome research.

[11]  J. Exposito,et al.  Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. , 2000, Journal of molecular biology.

[12]  C. Ponting,et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases , 2000, Nature.

[13]  E. Koonin,et al.  The Impact of Comparative Genomics on Our Understanding of Evolution , 2000, Cell.

[14]  Michael Y. Galperin,et al.  Who's your neighbor? New computational approaches for functional genomics , 2000, Nature Biotechnology.

[15]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[16]  M. Hochstrasser,et al.  The Yeast ULP2 (SMT4) Gene Encodes a Novel Protease Specific for the Ubiquitin-Like Smt3 Protein , 2000, Molecular and Cellular Biology.

[17]  Gary J. Olsen,et al.  Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process , 2000, Microbiology and Molecular Biology Reviews.

[18]  L. Aravind,et al.  Comparative Genome Analysis of the Pathogenic Spirochetes Borrelia burgdorferi and Treponema pallidum , 2000, Infection and Immunity.

[19]  H Philippe,et al.  Molecular phylogeny: pitfalls and progress. , 2000, International microbiology : the official journal of the Spanish Society for Microbiology.

[20]  E. Koonin,et al.  A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. , 2000, Trends in biochemical sciences.

[21]  S Brunak,et al.  Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. , 2000, Nucleic acids research.

[22]  W. Doolittle,et al.  Uprooting the tree of life. , 2000, Scientific American.

[23]  T. Hunter,et al.  Signaling—2000 and Beyond , 2000, Cell.

[24]  D. Moreira,et al.  Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages: implications for the origin of bacterial replication machinery , 2000, Molecular microbiology.

[25]  G. Tannock The intestinal microflora: potentially fertile ground for microbial physiologists. , 2000, Advances in microbial physiology.

[26]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[27]  P. Hanawalt,et al.  A phylogenomic study of DNA repair genes, proteins, and processes. , 1999, Mutation research.

[28]  I Uchiyama,et al.  Shaping the genome--restriction-modification systems as mobile genetic elements. , 1999, Current opinion in genetics & development.

[29]  J. Lawrence,et al.  Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. , 1999, Current opinion in genetics & development.

[30]  M. W. Gray,et al.  Evolution of organellar genomes. , 1999, Current opinion in genetics & development.

[31]  R. Doolittle,et al.  An Attempt to Pinpoint the Phylogenetic Introduction of Glutaminyl-tRNA Synthetase Among Bacteria , 1999, Journal of Molecular Evolution.

[32]  C. Cambillau,et al.  Structure-activity of cutinase, a small lipolytic enzyme. , 1999, Biochimica et biophysica acta.

[33]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[34]  E. Koonin,et al.  The fukutin protein family – predicted enzymes modifying cell-surface molecules , 1999, Current Biology.

[35]  John M. Logsdon,et al.  Evolutionary genomics: Thermotoga heats up lateral gene transfer , 1999, Current Biology.

[36]  E V Koonin,et al.  Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. , 1999, Genome research.

[37]  G. Olsen,et al.  Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? , 1999, Trends in genetics : TIG.

[38]  Michael Y. Galperin,et al.  Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. , 1999, Genome research.

[39]  Tatiana A. Tatusova,et al.  Complete genomes in WWW Entrez: data representation and analysis , 1999, Bioinform..

[40]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[41]  C. Ponting,et al.  Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. , 1999, Journal of molecular biology.

[42]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[43]  E. Pennisi Is It Time to Uproot the Tree of Life? , 1999, Science.

[44]  S Karlin,et al.  Detecting Alien Genes in Bacterial Genomes a , 1999, Annals of the New York Academy of Sciences.

[45]  E V Koonin,et al.  Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. , 1999, Trends in genetics : TIG.

[46]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Hochstrasser,et al.  A new protease required for cell-cycle progression in yeast , 1999, Nature.

[48]  E. Koonin,et al.  Conserved domains in DNA repair proteins and evolution of repair systems. , 1999, Nucleic acids research.

[49]  H. Mori,et al.  Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. , 1999, Molecular biology and evolution.

[50]  H. Winkler,et al.  Non-mitochondrial ATP transport. , 1999, Trends in biochemical sciences.

[51]  W. Martin Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[52]  B F Lang,et al.  Mitochondrial genome evolution and the origin of eukaryotes. , 1999, Annual review of genetics.

[53]  R. Doolittle,et al.  Evolutionary anomalies among the aminoacyl-tRNA synthetases. , 1998, Current opinion in genetics & development.

[54]  David M. Ward,et al.  A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities , 1998, Microbiology and Molecular Biology Reviews.

[55]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[56]  L Sundström,et al.  The Potential of Integrons and Connected Programmed Rearrangements for Mediating Horizontal Gene Transfer , 1998, APMIS. Supplementum.

[57]  E V Koonin,et al.  Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. , 1998, Trends in genetics : TIG.

[58]  D. Söll,et al.  Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[60]  E. Koonin,et al.  Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. , 1998, Genome research.

[61]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[62]  R. Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant physiology.

[63]  Jianzhi Zhang,et al.  A bacterial antibiotic resistance gene with eukaryotic origins , 1998, Current Biology.

[64]  E Pennisi,et al.  Genome Data Shake Tree of Life , 1998, Science.

[65]  John M. Logsdon,et al.  Archaeal genomics: Do archaea have a mixed heritage? , 1998, Current Biology.

[66]  L. Cavalli-Sforza The DNA revolution in population genetics. , 1998, Trends in genetics : TIG.

[67]  T. Gaasterland,et al.  Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes. , 1998, Microbial & comparative genomics.

[68]  T Gaasterland,et al.  Constructing multigenome views of whole microbial genomes. , 1998, Microbial & comparative genomics.

[69]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[70]  D. Söll,et al.  Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[72]  S. Gould,et al.  The exaptive excellence of spandrels as a term and prototype. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[73]  H. Ochman,et al.  How Salmonella became a pathogen. , 1997, Trends in microbiology.

[74]  J. Lawrence Selfish operons and speciation by gene transfer. , 1997, Trends in microbiology.

[75]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[76]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[77]  Eugene V. Koonin,et al.  SEALS: A System for Easy Analysis of Lots of Sequences , 1997, ISMB.

[78]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[79]  H. Ochman,et al.  Amelioration of Bacterial Genomes: Rates of Change and Exchange , 1997, Journal of Molecular Evolution.

[80]  D. Söll,et al.  Aminoacyl-tRNA synthesis: divergent routes to a common goal. , 1997, Trends in biochemical sciences.

[81]  S. Tabata,et al.  Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. , 1997, Plant & cell physiology.

[82]  G. Dunny,et al.  Cell-cell communication in gram-positive bacteria. , 1997, Annual review of microbiology.

[83]  Paul Tempst,et al.  RSC, an Essential, Abundant Chromatin-Remodeling Complex , 1996, Cell.

[84]  E V Koonin,et al.  Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. , 1996, Current opinion in genetics & development.

[85]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[86]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Bork,et al.  Non-orthologous gene displacement. , 1996, Trends in genetics : TIG.

[88]  E V Koonin,et al.  Gene order is not conserved in bacterial evolution. , 1996, Trends in genetics : TIG.

[89]  G. B. Golding,et al.  The origin of the eukaryotic cell. , 1996, Trends in biochemical sciences.

[90]  P. Bork,et al.  Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli , 1996, Current Biology.

[91]  H. Paerl Microscale physiological and ecological studies of aquatic cyanobacteria: Macroscale implications , 1996, Microscopy research and technique.

[92]  J. Felsenstein Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. , 1996, Methods in enzymology.

[93]  D. Karl,et al.  Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii , 1995, Applied and environmental microbiology.

[94]  K Kusano,et al.  Selfish behavior of restriction-modification systems , 1995, Science.

[95]  M. Bibb,et al.  Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. , 1995, Biotechnology.

[96]  G. B. Golding,et al.  Protein-based phylogenies support a chimeric origin for the eukaryotic genome. , 1995, Molecular biology and evolution.

[97]  J K Brown,et al.  Bootstrap hypothesis tests for evolutionary trees and other dendrograms. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[99]  D. Stahl,et al.  Community structure of a microbial mat: the phylogenetic dimension. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[100]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment. , 1994, Microbiological reviews.

[101]  M. Syvanen Horizontal gene transfer: evidence and possible consequences. , 1994, Annual review of genetics.

[102]  T. Hackstadt,et al.  Hc1‐mediated effects on DNA structure: a potential regulator of chlamydial development , 1993, Molecular microbiology.

[103]  J. Ito,et al.  Compilation, alignment, and phylogenetic relationships of DNA polymerases. , 1993, Nucleic acids research.

[104]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[105]  R F Doolittle,et al.  Evolution by acquisition: the case for horizontal gene transfers. , 1992, Trends in biochemical sciences.

[106]  M W Gray,et al.  The endosymbiont hypothesis revisited. , 1992, International review of cytology.

[107]  A. Danchin,et al.  Evidence for horizontal gene transfer in Escherichia coli speciation. , 1991, Journal of molecular biology.

[108]  G. Sprague,,et al.  Genetic exchange between kingdoms. , 1991, Current opinion in genetics & development.

[109]  C. Patterson Homology in classical and molecular biology. , 1988, Molecular biology and evolution.

[110]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[111]  M. Syvanen,et al.  Cross-species gene transfer; implications for a new theory of evolution. , 1985, Journal of theoretical biology.

[112]  D. Hartl,et al.  Accessory DNAs in the bacterial gene pool: playground for coevolution. , 1984, Ciba Foundation symposium.

[113]  M. Gouy,et al.  Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. , 1980, Nucleic acids research.

[114]  M. Gouy,et al.  Codon catalog usage and the genome hypothesis. , 1980, Nucleic acids research.

[115]  L. Margulis,et al.  Possible evolutionary significance of spirochaetes , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[116]  O. Avery,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.