The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection

We provide a concise presentation of the Smaller (SALI) and the Generalized Alignment Index (GALI) methods of chaos detection. These are efficient chaos indicators based on the evolution of two or more, initially distinct, deviation vectors from the studied orbit. After explaining the motivation behind the introduction of these indices, we sum up the behaviors they exhibit for regular and chaotic motion, as well as for stable and unstable periodic orbits, focusing mainly on finite-dimensional conservative systems: autonomous Hamiltonian models and symplectic maps. We emphasize the advantages of these methods in studying the global dynamics of a system, as well as their ability to identify regular motion on low dimensional tori. Finally we discuss several applications of these indices to problems originating from different scientific fields like celestial mechanics, galactic dynamics, accelerator physics and condensed matter physics.

[1]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .

[2]  B. Chirikov,et al.  Marginal local instability of quasi-periodic motion , 1980 .

[3]  Timoteo Carletti,et al.  Hamiltonian control used to improve the beam stability in particle accelerator models , 2012 .

[4]  D. D. Carpintero,et al.  LP-VIcode: A program to compute a suite of variational chaos indicators , 2014, Astron. Comput..

[5]  Zsolt Sándor,et al.  The Relative Lyapunov Indicator: An Efficient Method of Chaos Detection , 2004 .

[6]  Michael N. Vrahatis,et al.  How Does the Smaller Alignment Index (SALI) Distinguish Order from Chaos , 2003, nlin/0301035.

[7]  J. Meiss,et al.  Generic twistless bifurcations , 1999, chao-dyn/9901025.

[8]  D. Merritt,et al.  Self-consistent Models of Cuspy Triaxial Galaxies with Dark Matter Halos , 2006, astro-ph/0611205.

[9]  Xin Wu,et al.  Analysis of New Four-Dimensional Chaotic Circuits with Experimental and numerical Methods , 2012, Int. J. Bifurc. Chaos.

[10]  P. Stránský,et al.  Quantum chaos in the nuclear collective model: Classical-quantum correspondence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  DE Recherche,et al.  Efficient control of accelerator maps , 2011 .

[12]  E. Zotos Classifying orbits in galaxy models with a prolate or an oblate dark matter halo component , 2014, 1404.4194.

[13]  Hermann Haken,et al.  At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point , 1983 .

[14]  Roberto Barrio,et al.  Sensitivity tools vs. Poincaré sections , 2005 .

[15]  Ch. Skokos,et al.  Application of the SALI chaos detection method to accelerator mappings , 2006 .

[16]  Ch. Skokos,et al.  Interplay between chaotic and regular motion in a time-dependent barred galaxy model , 2012, 1208.3551.

[17]  G. Contopoulos,et al.  Orbital structure in barred galaxies , 2007 .

[18]  R. Dvorak,et al.  Stability of motion in the Sitnikov 3-body problem , 2007 .

[19]  Adjusting chaotic indicators to curved spacetimes , 2013, 1311.6281.

[20]  O. Racoveanu Comparison of chaos detection methods in the circular restricted three‐body problem , 2014 .

[21]  P. Cincotta,et al.  Chirikov and Nekhoroshev diffusion estimates: Bridging the two sides of the river , 2013, 1310.3158.

[22]  Roberto Barrio,et al.  Spurious structures in chaos indicators maps , 2009 .

[23]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.

[24]  G. Voyatzis Chaos, Order, and Periodic Orbits in 3:1 Resonant Planetary Dynamics , 2008 .

[25]  P. Kevrekidis,et al.  Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate. , 2013, Chaos.

[26]  Tassos Bountis,et al.  Chaotic Dynamics of n-Degree of Freedom Hamiltonian Systems , 2005, Int. J. Bifurc. Chaos.

[27]  Chris G. Antonopoulos,et al.  Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi–Pasta–Ulam lattices by the Generalized Alignment Index method , 2008, 0802.1646.

[28]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[29]  P. Cincotta,et al.  A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings , 2011, 1108.2196.

[30]  C. Antonopoulos,et al.  SALI: An Efficient Indicator of Chaos with Application to 2 and 3 Degrees of Freedom Hamiltonian Systems , 2010, 1008.2538.

[31]  Ch. Skokos,et al.  Application of the Generalized Alignment Index (GALI) method to the dynamics of multi--dimensional symplectic maps , 2007, 0712.1720.

[32]  Linear stability of natural symplectic maps , 1998 .

[33]  D. D. Carpintero,et al.  Models of cuspy triaxial stellar systems - III. The effect of velocity anisotropy on chaoticity , 2013, 1312.3180.

[34]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[35]  K. E. Papadakis,et al.  Periodic orbits and bifurcations in the Sitnikov four-body problem , 2008 .

[36]  P. Cejnar,et al.  Occurrence of high-lying rotational bands in the interacting boson model , 2010 .

[37]  S. Paleari,et al.  Numerical Methods and Results in the FPU Problem , 2007 .

[38]  R. Machado,et al.  Chaos and dynamical trends in barred galaxies: bridging the gap between N-body simulations and time-dependent analytical models , 2013, 1311.3450.

[39]  John D. Hadjidemetriou,et al.  The stability of periodic orbits in the three-body problem , 1975 .

[40]  I. Shimada,et al.  On the C-System-Like Property of the Lorenz System , 1977 .

[41]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[42]  Chris G. Antonopoulos,et al.  Weak Chaos Detection in the Fermi-PASTA-Ulam-α System Using Q-Gaussian Statistics , 2011, Int. J. Bifurc. Chaos.

[43]  Christos Efthymiopoulos,et al.  Detection of Ordered and Chaotic Motion Using the Dynamical Spectra , 1999 .

[44]  Roberto Barrio,et al.  Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.

[45]  Haris Skokos,et al.  Complex Hamiltonian Dynamics , 2012 .

[46]  L. M. Saha,et al.  Chaotic Evaluations in a Modified Coupled Logistic Type Predator-Prey Model , 2012 .

[47]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[48]  Guoqing Huang,et al.  Circuit Simulation of the Modified Lorenz System , 2013 .

[49]  C. Efthymiopoulos,et al.  Low-dimensional q-tori in FPU lattices: dynamics and localization properties , 2012, 1205.2573.

[50]  P. Stránský,et al.  Order and chaos in the geometric collective model , 2007 .

[51]  C. Efthymiopoulos,et al.  Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  T. Bountis,et al.  Studying the Global Dynamics of Conservative Dynamical Systems Using the SALI Chaos Detection Method , 2007, nlin/0703037.

[53]  E. Athanassoula,et al.  Regular and chaotic orbits in barred galaxies - I. Applying the SALI/GALI method to explore their distribution in several models , 2011, 1102.1157.

[54]  E. Zotos,et al.  Order and chaos in a new 3D dynamical model describing motion in non-axially symmetric galaxies , 2013, 1311.3417.

[55]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[56]  Elena Lega,et al.  THE FAST LYAPUNOV INDICATOR: A SIMPLE TOOL TO DETECT WEAK CHAOS. APPLICATION TO THE STRUCTURE OF THE MAIN ASTEROIDAL BELT , 1997 .

[57]  Michael N. Vrahatis,et al.  Evolutionary Methods for the Approximation of the Stability Domain and Frequency Optimization of Conservative Maps , 2008, Int. J. Bifurc. Chaos.

[58]  P. Stránský,et al.  Regularity-induced separation of intrinsic and collective dynamics. , 2010, Physical review letters.

[59]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[60]  Ch. Skokos,et al.  On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems , 2001 .

[61]  S. Ruffo,et al.  Scaling with System Size of the Lyapunov Exponents for the Hamiltonian Mean Field Model , 2010, 1006.5341.

[62]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[63]  T. Bountis,et al.  Application of the GALI method to localization dynamics in nonlinear systems , 2008, 0806.3563.

[64]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[65]  Giorgio Turchetti,et al.  Analysis of Round Off Errors with Reversibility Test as a Dynamical indicator , 2012, Int. J. Bifurc. Chaos.

[66]  Yakov Pesin,et al.  The Multiplicative Ergodic Theorem , 2013 .

[67]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[68]  Tassos Bountis,et al.  Existence and stability of localized oscillations in 1-dimensional lattices with soft-spring and hard-spring potentials , 2004 .

[69]  Charalampos Skokos,et al.  Probing the Local Dynamics of periodic orbits by the generalized Alignment Index (Gali) Method , 2011, Int. J. Bifurc. Chaos.

[70]  R. MacKay,et al.  Linear stability of symplectic maps , 1987 .

[71]  C. Kalapotharakos The rate of secular evolution in elliptical galaxies with central masses , 2008, 0806.2973.

[72]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[73]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[74]  Bálint Érdi,et al.  Chaotic and stable behaviour in the Caledonian Symmetric Four-Body Problem , 2004 .

[75]  Charalampos Skokos,et al.  Efficient Integration of the variational equations of Multidimensional Hamiltonian Systems: Application to the Fermi-PASTA-Ulam Lattice , 2011, Int. J. Bifurc. Chaos.

[76]  P. Stránský,et al.  Classical and quantum properties of the semiregular arc inside the Casten triangle , 2007 .

[77]  Georg A. Gottwald,et al.  The 0-1 Test for Chaos: A Review , 2016 .

[78]  George Contopoulos,et al.  On the number of isolating integrals in Hamiltonian systems , 1978 .

[79]  Xin Wu,et al.  Analysis of Permanent-Magnet Synchronous Motor Chaos System , 2011, AICI.

[80]  Jacques Demongeot,et al.  Linear and nonlinear Arabesques: a Study of Closed Chains of Negative 2-Element Circuits , 2013, Int. J. Bifurc. Chaos.

[81]  Guo-Qing Huang,et al.  Numerical analysis and circuit realization of the modified LÜ chaotic system , 2014 .

[82]  M. Robnik,et al.  Survey on the role of accelerator modes for anomalous diffusion: the case of the standard map. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[84]  L. A. Darriba,et al.  Comparative Study of variational Chaos indicators and ODEs' numerical integrators , 2012, Int. J. Bifurc. Chaos.

[85]  C. Antonopoulos,et al.  Weak chaos and the "melting transition" in a confined microplasma system. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  K. E. Papadakis,et al.  The stability of vertical motion in the N-body circular Sitnikov problem , 2009 .

[87]  G. Benettin,et al.  Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom , 1979 .

[88]  J Romai,et al.  LOW-DIMENSIONAL QUASIPERIODIC MOTION IN HAMILTONIAN SYSTEMS , 2006 .

[89]  Holger Kantz,et al.  Internal Arnold diffusion and chaos thresholds in coupled symplectic maps , 1988 .

[90]  C. Efthymiopoulos,et al.  Method for distinguishing between ordered and chaotic orbits in four-dimensional maps , 1998 .

[91]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[92]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[93]  Stefan Siegert,et al.  Prediction of Complex Dynamics: Who Cares About Chaos? , 2016 .

[94]  Chris G. Antonopoulos,et al.  Detecting Order and Chaos by the Linear Dependence Index (LDI) Method , 2007, 0711.0360.