Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water

Abstract Our study investigates possible formation mechanisms of the very recent bright gully deposits (BGDs) observed on Mars in order to assess if liquid water was required. We use two models in our assessment: a one-dimensional (1D) kinematic model to model dry granular flows and a two-dimensional (2D) fluid-dynamic model, FLO-2D ( O’Brien et al., 1993 , FLO Engineering), to model water-rich and wet sediment-rich flows. Our modeling utilizes a high-resolution topographic model generated from a pair of images acquired by the High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter. For the 1D kinematic modeling of dry granular flows, we examine a range of particle sizes, flow thicknesses, initial velocities, flow densities, and upslope initiation points to examine how these parameters affect the flow run-out distances of the center of mass of a flow. Our 1D modeling results show that multiple combinations of realistic parameters could produce dry granular flows that travel to within the observed deposits’ boundaries. We run the 2D fluid-dynamic model, FLO-2D, to model both water-rich and wet sediment-rich flows. We vary the inflow volume, inflow location, discharge rate, water-loss rate (water-rich models only), and simulation time and examine the resulting maximum flow depths and velocities. Our 2D modeling results suggest that both wet sediment-rich and water-rich flows could produce the observed bright deposits. Our modeling shows that the BGDs are not definitive evidence of recent liquid water on the surface of Mars.

[1]  M. Kreslavsky,et al.  Martian Gully Slope Measurements made Using HiRISE Stereo Pairs , 2008 .

[2]  Christopher P. McKay,et al.  Formation of Martian Gullies by the Action of Liquid Water Flowing Under Current Martian Environmental Conditions , 2005 .

[3]  N. Cabrol,et al.  Recent aqueous environments in Martian impact craters: an astrobiological perspective , 2001 .

[4]  G. Bart Comparison of small lunar landslides and martian gullies , 2007 .

[5]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[6]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[7]  J. D. Vance,et al.  The first 80‐hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind , 2003 .

[8]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[9]  David E. Smith,et al.  Crossover analysis of Mars Orbiter Laser Altimeter data , 2001 .

[10]  David E. Smith,et al.  The Mars Observer laser altimeter investigation , 1992 .

[11]  M. Mellon,et al.  Recent gullies on Mars and the source of liquid water , 2001 .

[12]  Nicolas Thomas,et al.  Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE) , 2010 .

[13]  R. Rajar,et al.  Numerical simulation of debris flows triggered from the Strug rock fall source area, W Slovenia , 2006 .

[14]  F. Nimmo Admittance estimates of mean crustal thickness and density at the Martian hemispheric dichotomy , 2002 .

[15]  N. Lanza,et al.  Depths, Orientation and Slopes of Martian Hillside Gullies in the Northern Hemisphere , 2006 .

[16]  M. Gilmore,et al.  Role of aquicludes in formation of Martian gullies , 2002 .

[17]  Michael R. Perfit,et al.  Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity , 2002 .

[18]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[19]  S. Stewart,et al.  Surface runoff features on Mars: Testing the carbon dioxide formation hypothesis , 2002 .

[20]  A. Treiman Geologic settings of Martian gullies: Implications for their origins , 2003 .

[21]  Betty Sovilla,et al.  Observations and modelling of snow avalanche entrainment , 2002 .

[22]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[23]  Ming-Lang Lin,et al.  Debris flow run off simulation and verification ‒ case study of Chen-You-Lan Watershed, Taiwan , 2005 .

[24]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[25]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[26]  James W. Head,et al.  Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography , 2007 .

[27]  Crucial role of sidewalls in granular surface flows: consequences for the rheology , 2005, Journal of Fluid Mechanics.

[28]  D. Burt,et al.  Eutectic Brines on Mars: Origin and Possible Relation to Young Seepage Features , 2002 .

[29]  M. Zuber,et al.  The Borealis basin and the origin of the martian crustal dichotomy , 2008, Nature.

[30]  Michael H. Hecht,et al.  Metastability of liquid water on Mars , 2001 .

[31]  Susan K. McMahon,et al.  Overview of the Planetary Data System , 1996 .

[32]  A. McEwen,et al.  RECENT CHANNEL SYSTEMS EMANATING FROM HALE CRATER EJECTA: IMPLICATIONS FOR THE NOACHIAN LANDSCAPE EVOLUTION OF MARS , 2008 .

[33]  E. Gaidos Cryovolcanism and the Recent Flow of Liquid Water on Mars , 2001 .

[34]  Herbert M. Wilson,et al.  A Dictionary of Topographic Forms , 2022 .

[35]  W. Hartmann,et al.  Martian hillside gullies and icelandic analogs , 2003 .

[36]  V. Gulick,et al.  Plausibility of the “White Mars” hypothesis based upon the thermal nature of the Martian subsurface , 2003 .

[37]  M. Mellon Small‐scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost , 1997 .

[38]  Randolph L. Kirk,et al.  Compositional stratigraphy of clay‐bearing layered deposits at Mawrth Vallis, Mars , 2008 .

[39]  Christopher P. McKay,et al.  Snow and Ice Melt Flow Features on Devon Island, Nunavut, Arctic Canada as Possible Analogs for Recent Slope Flow Features on Mars , 2001 .

[40]  Olivier Pouliquen,et al.  SCALING LAWS IN GRANULAR FLOWS DOWN ROUGH INCLINED PLANES , 1999 .

[41]  J. Pelletier,et al.  Recent bright gully deposits on Mars: Wet or dry flow? , 2007 .

[42]  A. McEwen,et al.  A Closer Look at Water-Related Geologic Activity on Mars , 2007, Science.

[43]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[44]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[45]  D. Mcclung,et al.  The Avalanche Handbook , 1993 .

[46]  A. Albee,et al.  Mars global surveyor mission: overview and status. , 1998, Science.

[47]  S. Supharatid The Hat Yai 2000 flood: the worst flood in Thai history , 2006 .

[48]  J. Head,et al.  Mars outflow channels: A reappraisal of the estimation of water flow velocities from water depths, regional slopes, and channel floor properties , 2004 .

[49]  Derek W. G. Sears,et al.  On laboratory simulation and the temperature dependence of the evaporation rate of brine on Mars , 2005 .

[50]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[51]  C. Hugenholtz Frosted granular flow: A new hypothesis for mass wasting in martian gullies , 2008 .

[52]  P. Julien,et al.  Two‐Dimensional Water Flood and Mudflow Simulation , 1993 .

[53]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[54]  Derek W. G. Sears,et al.  On laboratory simulation and the evaporation rate of water on Mars , 2005 .

[55]  R. Denlinger A model for generation of ash clouds by pyroclastic flows, with application to the 1980 eruptions at Mount St. Helens, Washington , 1987 .

[56]  Kelly J. Kolb,et al.  Coregistration of Mars Orbiter Laser Altimeter (MOLA) topography with high-resolution Mars images , 2009, Comput. Geosci..

[57]  On laboratory simulation and the effect of small temperature oscillations about the freezing point and ice formation on the evaporation rate of water on Mars. , 2006, Astrobiology.

[58]  J. Heldmann,et al.  Modeling water ice lifetimes at recent Martian gully locations , 2007 .

[59]  Jonathan I. Lunine,et al.  Liquid CO2 breakout and the formation of recent small gullies on Mars , 2001 .

[60]  G. Sorbino,et al.  Assessing potential debris flow runout: a comparison of two simulation models , 2008 .

[61]  J. Anderson,et al.  Modernization of the Integrated Software for Imagers and Spectrometers , 2004 .

[62]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[63]  F. Forget,et al.  Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity , 2001, Science.

[64]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[65]  Jennifer Lynne Heldmann,et al.  Observations of martian gullies and constraints on potential formation mechanisms , 2004 .

[66]  M. Mellon,et al.  Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere , 2007 .

[67]  Nick Hoffman,et al.  Active polar gullies on Mars and the role of carbon dioxide. , 2002, Astrobiology.