On a class of polynomial triangular macro-elements

In this paper we present a new class of polynomial triangular macro-elements of arbitrary degree which are an extension of the classical Clough-Tocher cubic scheme. Their most important property is that the degree plays the role of a tension parameter, since these macro elements tend to the plane interpolating the vertices data. Graphical examples showing their use in scattered data interpolation are reported.

[1]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[2]  P. G. Ciarlet,et al.  Sur l'élément de Clough et Tocher , 1974 .

[3]  Paolo Costantini An algorithm for computing shape-preserving interpolating splines of arbitrary degree , 1988 .

[4]  Robert J. Renka,et al.  Algorithm 716: TSPACK: tension spline curve-fitting package , 1993, TOMS.

[5]  Carla Manni,et al.  A bicubic shape-preserving blending scheme , 1996, Comput. Aided Geom. Des..

[6]  Tomas Sauer Multivariate Bernstein polynomials and convexity , 1991, Comput. Aided Geom. Des..

[7]  Gerald E. Farin,et al.  A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..

[8]  Robert J. Renka,et al.  Interpolatory tension splines with automatic selection of tension factors , 1987 .

[9]  Carla Manni,et al.  A local scheme for bivariate co-monotone interpolation , 1991, Comput. Aided Geom. Des..

[10]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[11]  Panagiotis D. Kaklis,et al.  Convexity-Preserving Polynomial Splines of Non-uniform Degree , 1990 .

[12]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[13]  S. Rippa,et al.  Data-dependent triangulations for scattered data interpolation and finite element approximation , 1993 .

[14]  Paul Sablonnière,et al.  Composite finite elements of class Ck , 1985 .

[15]  Thomas A. Grandine,et al.  On convexity of piecewise polynomial functions on triangulations , 1989, Comput. Aided Geom. Des..

[16]  Ferruccio Fontanella,et al.  Shape-preserving bivariate interpolation , 1990 .

[17]  Paolo Costantini Co-Monotone interpolating splines of arbitrary degree—a local approach , 1987 .

[18]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[19]  Wolfgang Dahmen,et al.  Convexity preserving interpolation and Powell-Sabin elements , 1992, Comput. Aided Geom. Des..

[20]  A. K. Cline Scalar- and planar-valued curve fitting using splines under tension , 1974, Commun. ACM.

[21]  R. E. Carlson,et al.  An algorithm for monotone piecewise bicubic interpolation , 1989 .

[22]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[23]  Larry L. Schumaker,et al.  Cubic spline fitting using data dependent triangulations , 1990, Comput. Aided Geom. Des..

[24]  Peter Alfeld,et al.  A bivariate C2 Clough-Tocher scheme , 1984, Comput. Aided Geom. Des..

[25]  Panagiotis D. Kaklis,et al.  Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree , 1995 .

[26]  Larry L. Schumaker,et al.  Computing optimal triangulations using simulated annealing , 1993, Comput. Aided Geom. Des..