Two-Component Systems in the Regulation of Heavy Metal Resistance

[1]  M. Solioz,et al.  CopY Is a Copper-inducible Repressor of the Enterococcus hirae Copper ATPases* , 1997, The Journal of Biological Chemistry.

[2]  N. Brown,et al.  Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. , 1997, Microbiology.

[3]  M Mergeay,et al.  Two‐component regulatory system involved in transcriptional control of heavy‐metal homoeostasis in Alcaligenes eutrophus , 1997, Molecular microbiology.

[4]  K. Poole,et al.  PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[5]  C. W. Chen,et al.  The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. , 1996, Molecular microbiology.

[6]  C. Vulpe,et al.  CPx-type ATPases: a class of P-type ATPases that pump heavy metals. , 1996, Trends in biochemical sciences.

[7]  K. Senoo,et al.  Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14. , 1996, Bioscience, biotechnology, and biochemistry.

[8]  R. Palmiter,et al.  ZnT‐2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. , 1996, The EMBO journal.

[9]  I. Yano,et al.  Transfer of Two Burkholderia and An Alcaligenes Species to Ralstonia Gen. Nov. , 1995, Microbiology and immunology.

[10]  N. Brown,et al.  Molecular genetics and transport analysis of the copper‐resistance determinant (pco) from Escherichia coli plasmid pRJ1004 , 1995, Molecular microbiology.

[11]  S. Silver,et al.  CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258 , 1995, Journal of bacteriology.

[12]  D. Nies,et al.  The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli , 1995, Journal of bacteriology.

[13]  A. Odermatt,et al.  Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae(*) , 1995, The Journal of Biological Chemistry.

[14]  J. Bradner,et al.  DNA-bend modulation in a repressor-to-activator switching mechanism , 1995, Nature.

[15]  A. Odermatt,et al.  Two trans-Acting Metalloregulatory Proteins Controlling Expression of the Copper-ATPases of Enterococcus hirae* , 1995, The Journal of Biological Chemistry.

[16]  B. Rosen,et al.  Mechanisms of metalloregulation of an anion-translocating ATPase , 1995, Journal of bioenergetics and biomembranes.

[17]  R. Palmiter,et al.  Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. , 1995, The EMBO journal.

[18]  H. Schlegel,et al.  Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A , 1994, Journal of bacteriology.

[19]  S. Silver,et al.  Newer systems for bacterial resistances to toxic heavy metals. , 1994, Environmental health perspectives.

[20]  K. Rudd,et al.  Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Cooksey Molecular mechanisms of copper resistance and accumulation in bacteria. , 1994, FEMS microbiology reviews.

[22]  B. Rosen,et al.  Properties of the arsenate reductase of plasmid R773. , 1994, Biochemistry.

[23]  Tatsuya Maeda,et al.  A two-component system that regulates an osmosensing MAP kinase cascade in yeast , 1994, Nature.

[24]  M. Inouye,et al.  The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation. , 1994, The Journal of biological chemistry.

[25]  M. Schroth,et al.  Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase , 1994, Journal of bacteriology.

[26]  H. Bussey,et al.  SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors , 1993, Journal of bacteriology.

[27]  Thomas V. O'Halloran,et al.  Transition metals in control of gene expression. , 1993, Science.

[28]  A. Odermatt,et al.  Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. , 1993, The Journal of biological chemistry.

[29]  K. Poole,et al.  Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two‐component regulatory system , 1993, Molecular microbiology.

[30]  J. Cha,et al.  Copper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon , 1993, Applied and environmental microbiology.

[31]  D. Cooksey,et al.  A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae , 1993, Journal of bacteriology.

[32]  N. Robinson,et al.  SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. , 1993, Nucleic acids research.

[33]  H. Liesegang,et al.  Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34 , 1993, Journal of bacteriology.

[34]  N. Brown,et al.  Construction and characterization of a mercury‐independent MerR activator (MerRAC): transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion. , 1993, The EMBO journal.

[35]  D. Cooksey Copper uptake and resistance in bacteria , 1993, Molecular microbiology.

[36]  D. Nies,et al.  CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus , 1992, Journal of bacteriology.

[37]  A. Odermatt,et al.  An ATPase Operon Involved in Copper Resistance by Enterococcus hirae a , 1992, Annals of the New York Academy of Sciences.

[38]  S. Silver,et al.  Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Kung,et al.  COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae , 1992, Molecular and cellular biology.

[40]  A. Summers Untwist and shout: a heavy metal-responsive transcriptional regulator , 1992, Journal of bacteriology.

[41]  S. Silver,et al.  Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. , 1992, Microbiological reviews.

[42]  A. Ansari,et al.  Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR , 1992, Nature.

[43]  U. Kües,et al.  Determinants Encoding Resistance to Several Heavy Metals in Newly Isolated Copper-Resistant Bacteria , 1991, Applied and environmental microbiology.

[44]  D. Mukhopadhyay,et al.  Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in gram-negative bacteria. , 1991, The Journal of biological chemistry.

[45]  Ludo Diels,et al.  DNA Probe-Mediated Detection of Resistant Bacteria from Soils Highly Polluted by Heavy Metals , 1990, Applied and environmental microbiology.

[46]  T. O’Halloran,et al.  Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Walsh,et al.  The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. , 1990, Science.

[48]  S. Silver,et al.  Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Inouye,et al.  Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Mizuno,et al.  Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, results in stimulation of its DNA-binding ability. , 1989, Journal of biochemistry.

[51]  S. Silver,et al.  Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus , 1989, Journal of bacteriology.

[52]  B. Frantz,et al.  The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex , 1989, Cell.

[53]  D. Cooksey,et al.  Induction of the copper resistance operon from Pseudomonas syringae , 1988, Journal of bacteriology.

[54]  M. Mergeay,et al.  Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34 , 1987, Journal of bacteriology.

[55]  F. Ausubel,et al.  Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Bender,et al.  Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance , 1986, Journal of bacteriology.

[57]  M. Mergeay,et al.  Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals , 1985, Journal of bacteriology.

[58]  J. Camakaris,et al.  Inducible plasmid-mediated copper resistance in Escherichia coli. , 1985, Journal of general microbiology.

[59]  T. Tetaz,et al.  Plasmid-controlled resistance to copper in Escherichia coli , 1983, Journal of bacteriology.

[60]  W. V. Shaw,et al.  Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus , 1981, Journal of bacteriology.

[61]  N. Brown,et al.  bacterial mercury-resistance genes. , 1997, Metal ions in biological systems.

[62]  S. Silver,et al.  Bacterial heavy metal resistance: new surprises. , 1996, Annual review of microbiology.

[63]  Tsuguyoshi Suzuki,et al.  Toxicology of metals , 1996 .

[64]  L. Pratt,et al.  Porin Regulon of Escherichia coli , 1995 .

[65]  M. Surette,et al.  Two-component signal transduction systems : structure-function relationships and mechanisms of catalysis , 1995 .

[66]  J. Hoch,et al.  Two-component signal transduction , 1995 .

[67]  K. Volz Structural and Functional Conservation in Response Regulators , 1995 .

[68]  S. Silver,et al.  Bacterial Plasmid-Mediated Resistances to Mercury, Cadmium, and Copper , 1995 .

[69]  G. Traving,et al.  Meyers Handbuch Weltall , 1994 .

[70]  A. Tartakoff Advances in cell and molecular biology of membranes and organelles , 1994 .

[71]  M. Saier,et al.  Response regulators: structure, function and evolution. , 1994, Research in microbiology.

[72]  N. Brown,et al.  Bacterial transport of and resistance to copper , 1994 .

[73]  Y. Inoue,et al.  Cloning and phenotypic characterization of a gene enhancing resistance against oxidative stress in saccharomyces cerevisiae , 1993 .

[74]  K. Altendorf,et al.  The KDP ATPase of Escherichia coli. , 1992, Annals of the New York Academy of Sciences.

[75]  S. Silver,et al.  Plasmid chromate resistance and chromate reduction. , 1992, Plasmid.