A Frame Decomposition of the Atmospheric Tomography Operator

We consider the problem of atmospheric tomography, as it appears for example in adaptive optics systems for extremely large telescopes. We derive a frame decomposition, i.e., a decomposition in terms of a frame, of the underlying atmospheric tomography operator, extending the singular-value-type decomposition results of Neubauer and Ramlau (2017) by allowing a mixture of both natural and laser guide stars, as well as arbitrary aperture shapes. Based on both analytical considerations as well as numerical illustrations, we provide insight into the properties of the derived frame decomposition and its building blocks.

[1]  Curtis R Vogel,et al.  Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm. , 2006, Optics express.

[2]  B. Ellerbroek,et al.  Split atmospheric tomography using laser and natural guide stars. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Michel Tallon,et al.  Fast minimum variance wavefront reconstruction for extremely large telescopes. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Luc Gilles,et al.  A comparison of Multigrid V-cycle versus Fourier Domain Preconditioning for Laser Guide Star Atmospheric Tomography , 2007 .

[5]  Ronny Ramlau,et al.  A new temporal control approach for SCAO systems , 2019 .

[6]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[7]  Curtis R Vogel,et al.  Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics. , 2003, Applied optics.

[8]  R. Ramlau,et al.  A FREQUENCY DEPENDENT PRECONDITIONED WAVELET METHOD FOR ATMOSPHERIC TOMOGRAPHY , 2013 .

[9]  Andreas Neubauer,et al.  A Singular-Value-Type Decomposition for the Atmospheric Tomography Operator , 2017, SIAM J. Appl. Math..

[10]  Fabien Momey,et al.  Fractal iterative method for fast atmospheric tomography on extremely large telescopes , 2010, Astronomical Telescopes + Instrumentation.

[11]  R. Ramlau,et al.  Efficient iterative tip/tilt reconstruction for atmospheric tomography , 2014 .

[12]  Francois Rigaut,et al.  Principles, limitations, and performance of multiconjugate adaptive optics , 2000, Astronomical Telescopes and Instrumentation.

[13]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[14]  Luc Gilles,et al.  Computationally efficient wavefront reconstructor for simulation of multiconjugate adaptive optics on giant telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  L M Mugnier,et al.  Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Richard Clare,et al.  Performance of MCAO on the E-ELT using the Fractal Iterative Method for fast atmospheric tomography , 2011 .

[17]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[18]  William Rambold,et al.  The MOAO system of the IRMOS near-infrared multi-object spectrograph for TMT , 2006, SPIE Astronomical Telescopes + Instrumentation.

[19]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[20]  Tapio Helin,et al.  Wavelet methods in multi-conjugate adaptive optics , 2013, 1302.3734.

[21]  Ronny Ramlau,et al.  Finite element-wavelet hybrid algorithm for atmospheric tomography. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Ronny Ramlau,et al.  Kaczmarz algorithm for multiconjugated adaptive optics with laser guide stars. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  D. Fantinel,et al.  MAORY: adaptive optics module for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[24]  M. E. Davison,et al.  The Ill-Conditioned Nature of the Limited Angle Tomography Problem , 1983 .

[25]  T. Fusco,et al.  Coupling MOAO with integral field spectroscopy: specifications for the VLT and the E-ELT , 2008, 0808.1196.

[26]  Curtis R Vogel,et al.  Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography. , 2006, Applied optics.

[27]  Donald Gavel Tomography for multiconjugate adaptive optics systems using laser guide stars , 2004, SPIE Astronomical Telescopes + Instrumentation.

[28]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[29]  Ronny Ramlau,et al.  An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration , 2012 .

[30]  Luc Gilles,et al.  Layer-oriented multigrid wavefront reconstruction algorithms for multiconjugate adaptive optics , 2003, SPIE Astronomical Telescopes + Instrumentation.

[31]  Curtis R Vogel,et al.  Numerical simulations of multiconjugate adaptive optics wave-front reconstruction on giant telescopes. , 2003, Applied optics.

[32]  Onera,et al.  The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR , 2001, astro-ph/0109289.

[33]  R. Ramlau,et al.  A gradient-based method for atmospheric tomography , 2016 .

[34]  R. Ramlau,et al.  Optimal mirror deformation for multi conjugate adaptive optics systems , 2016 .