Column Subset Selection via Polynomial Time Dual Volume Sampling

[1]  Christos Boutsidis,et al.  Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..

[2]  Nima Anari,et al.  Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes , 2016, COLT.

[3]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[4]  Christos Boutsidis,et al.  Faster Subset Selection for Matrices and Applications , 2011, SIAM J. Matrix Anal. Appl..

[5]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[6]  Avner Magen,et al.  Near Optimal Dimensionality Reductions That Preserve Volumes , 2008, APPROX-RANDOM.

[7]  Santosh S. Vempala,et al.  Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.

[8]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[9]  J. Borcea,et al.  Applications of stable polynomials to mixed determinants: Johnson's conjectures, unimodality, and symmetrized Fischer products , 2006, math/0607755.

[10]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[11]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[12]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[13]  Christos Boutsidis,et al.  An improved approximation algorithm for the column subset selection problem , 2008, SODA.