Devices and chemical sensing applications of metal oxide nanowires

Metal oxide nanowires, with special physical properties, are ideal building blocks for a wide range of nanoscale electronics, optoelectronics, and chemical sensing devices. This article will describe the state-of-the-art research activities in metal oxide nanowire applications. This paper consists of three main sections categorized by metal oxide nanowire synthesis, electronic and optoelectronic devices applications, and chemical sensing applications. Finally, we will conclude this review with some perspectives and outlook on the future developments in the metal oxide nanowire research area.

[1]  Zhong Lin Wang,et al.  Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. , 2006, Small.

[2]  Daihua Zhang,et al.  Single crystalline magnetite nanotubes. , 2005, Journal of the American Chemical Society.

[3]  Changzheng Wu,et al.  From Complex Chains to 1D Metal Oxides: A Novel Strategy to Cu2O Nanowires , 2003 .

[4]  Jenshan Lin,et al.  Room-Temperature Hydrogen-Selective Sensing Using Single Pt-Coated ZnO Nanowires at Microwatt Power Levels , 2005 .

[5]  Kuei-Hsien Chen,et al.  Growth of Well Aligned IrO 2 Nanotubes on LiTaO 3 (012) Substrate , 2004 .

[6]  Dmitri Golberg,et al.  Quasi‐Aligned Single‐Crystalline W18O49 Nanotubes and Nanowires , 2003 .

[7]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[8]  Rong Zhang,et al.  Complexing-reagent assisted synthesis of α-Fe and γ-Fe2O3 nanowires under mild conditions , 2003 .

[9]  Hyoun-woo Kim,et al.  Growth of MgO nanowires assisted by the annealing treatment of Au-coated substrates , 2006 .

[10]  Kai Wang,et al.  Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications , 2008 .

[11]  K. Yong,et al.  Controlled Growth and Characterization of Tungsten Oxide Nanowires Using Thermal Evaporation of WO3 Powder , 2007 .

[12]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[13]  Youwei Du,et al.  Single crystal SnO2 zigzag nanobelts. , 2005, Journal of the American Chemical Society.

[14]  X. Bai,et al.  Preparation and electrical properties of ultrafine Ga2O3 nanowires. , 2006, The journal of physical chemistry. B.

[15]  Jian Zhang,et al.  Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes , 2003 .

[16]  Mingde Zhao,et al.  Synthesis and Room‐Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires , 2004 .

[17]  Yao-Lun Chen,et al.  Iridium Metal Thin Films and Patterned IrO2 Nanowires Deposited Using Iridium(I) Carbonyl Precursors , 2006 .

[18]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[19]  Julian W. Gardner,et al.  Electronic noses — development and future prospects , 1996 .

[20]  S. Chaudhuri,et al.  Morphology dependent field emission from In2O3 nanostructures , 2006 .

[21]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[22]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[23]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[24]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[25]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[26]  C. Lim,et al.  Nb2O5 Nanowires as Efficient Electron Field Emitters , 2008 .

[27]  B. Liu,et al.  Salt-Assisted Deposition of SnO2 on α-MoO3 Nanorods and Fabrication of Polycrystalline SnO2 Nanotubes , 2004 .

[28]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[29]  Ulrich Schlecht,et al.  V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines , 2005 .

[30]  O. Inganäs,et al.  Conducting Polymer Nanowires and Nanodots Made with Soft Lithography , 2002 .

[31]  Y. Chen,et al.  Raman scattering and field-emission properties of RuO2 nanorods , 2005 .

[32]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[33]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[34]  G. Meng,et al.  Large-scale synthesis and photoluminescence of single-crystalline β-Ga2O3 nanobelts , 2003 .

[35]  I-Cherng Chen,et al.  ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates , 2007 .

[36]  Zhong Lin Wang,et al.  Piezoelectric gated diode of a single zno nanowire , 2007 .

[37]  Jun Chen,et al.  Temperature dependence of field emission from cupric oxide nanobelt films , 2003 .

[38]  Jing Wang,et al.  Ga2O3 nanowires prepared by physical evaporation , 1999 .

[39]  Shihe Yang,et al.  Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells , 2005 .

[40]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[41]  Xiangyang Ma,et al.  One-pot, large-scale synthesis of SnO2 nanotubes at room temperature. , 2008, Chemical communications.

[42]  X. Ni,et al.  A Facile Non-hydrothermal Fabrication of Uniform α-MoO3Nanowires in High Yield , 2008 .

[43]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[44]  Jian Zhang,et al.  Humidity detection by nanostructured ZnO: A wireless quartz crystal microbalance investigation , 2007 .

[45]  Meijuan Zhao,et al.  Room-temperature ultraviolet-emitting In2O3 nanowires , 2003 .

[46]  Zhong Lin Wang,et al.  Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks , 2006 .

[47]  Stanislaus S. Wong,et al.  Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. , 2006, Journal of the American Chemical Society.

[48]  Chongwu Zhou,et al.  High-performance metal oxide nanowire chemical sensors with integrated micromachined hotplates , 2008 .

[49]  Gareth M. Fuge,et al.  Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film , 2005 .

[50]  Y. Bando,et al.  ZnO nanoneedles with tip surface perturbations: Excellent field emitters , 2004 .

[51]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[52]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[53]  B. Wang,et al.  Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation , 2003 .

[54]  N. Xu,et al.  Synthesis and field-emission properties of aligned MoO3 nanowires , 2003 .

[55]  Y. Chen,et al.  Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl Phys Lett 88:201907 , 2006 .

[56]  I. Lin,et al.  Characterization and Field‐Emission Properties of Needle‐like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films , 2003 .

[57]  Lizhen Zhang,et al.  Photoluminescence and Infrared Properties of α-Al2O3 Nanowires and Nanobelts , 2002 .

[58]  Guanghou Wang,et al.  Synthesis and characterization of rutile SnO2 nanorods , 2001 .

[59]  F. Zhou,et al.  Synthesis of Millimeter‐Range Orthorhombic V2O5 Nanowires and Impact of Thermodynamic and Kinetic Properties of the Oxidant on the Synthetic Process , 2008 .

[60]  U. Gösele,et al.  A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. , 2008, Nano letters.

[61]  Y. Bando,et al.  WO3 nanorods/nanobelts synthesized via physical vapor deposition process , 2003 .

[62]  G. Meng,et al.  Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders , 2003 .

[63]  Yadong Yin,et al.  Synthesis and Characterization of MgO Nanowires Through a Vapor‐Phase Precursor Method , 2002 .

[64]  Jun Chen,et al.  Growth and field-emission property of tungsten oxide nanotip arrays , 2005 .

[65]  Y. J. Chen,et al.  Synthesis and ethanol sensing properties of ZnSnO3 nanowires , 2005 .

[66]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[67]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[68]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[69]  Dongsheng Xu,et al.  Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts , 2007 .

[70]  Yi Cui,et al.  Fast, completely reversible li insertion in vanadium pentoxide nanoribbons. , 2007, Nano letters.

[71]  D. Kuang,et al.  Fabrication of boehmite AlOOH and γ-Al2O3 nanotubes via a soft solution route , 2003 .

[72]  Haoshen Zhou,et al.  Synthesis of single-crystal niobium pentoxide nanobelts , 2008 .

[73]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[74]  Sung‐Yool Choi,et al.  V-shaped tin oxide nanostructures featuring a broad photocurrent signal: an effective visible-light-driven photocatalyst. , 2006, Small.

[75]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[76]  Fumin Wang,et al.  Highly Efficient Dye-sensitized Solar Cells Based on Single Crystalline TiO2 Nanorod Film , 2005 .

[77]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[78]  Cesare Soci,et al.  Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. , 2007, Nano letters.

[79]  Jenshan Lin,et al.  Hydrogen-selective sensing at room temperature with ZnO nanorods , 2005 .

[80]  Y. Bando,et al.  Quasi-aligned MoO3 nanotubes grown on Ta substrate , 2002 .

[81]  Xi‐Wen Du,et al.  NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties , 2008 .

[82]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[83]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[84]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[85]  Miao Zhang,et al.  Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients , 2006 .

[86]  C. Baratto,et al.  Metal oxide nanocrystals for gas sensing , 2004, Proceedings of IEEE Sensors, 2004..

[87]  Yongsug Tak,et al.  Cu(2)O nanowires in an alumina template: electrochemical conditions for the synthesis and photoluminescence characteristics. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[88]  D. Bazin,et al.  Crystallization of β-MnO2 Nanowires in the Pores of SBA-15 Silicas: In Situ Investigation Using Synchrotron Radiation , 2004 .

[89]  Yifan Zheng,et al.  Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4 , 2007 .

[90]  Qianwang Chen,et al.  Magnetic‐Field‐Induced Growth of Single‐Crystalline Fe3O4 Nanowires , 2004 .

[91]  Jian Zhang,et al.  Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance , 2006 .

[92]  Zhifu Liu,et al.  Room temperature gas sensing of p-type TeO2 nanowires , 2007 .

[93]  Zhong Lin Wang,et al.  Structures of indium oxide nanobelts , 2003 .

[94]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[95]  Ling-Dong Sun,et al.  Low‐Temperature Fabrication of Highly Crystalline SnO2 Nanorods , 2003 .

[96]  D. Raftery,et al.  In situ solid-state NMR observations of photocatalytic surface chemistry: Degradation of trichloroethylene , 1997 .

[97]  J. Zhang,et al.  Hydrothermal synthesis and photoluminescence of TiO2 nanowires , 2002 .

[98]  Yadong Li,et al.  Controllable Fabrication and Electrical Performance of Single Crystalline Cu2O Nanowires with High Aspect Ratios , 2007 .

[99]  Zhiyong Fan,et al.  ZnO nanowires synthesized by vapor trapping CVD method , 2004 .

[100]  Shui-Tong Lee,et al.  Synthesis of β-Ga2O3 Nanowires by Laser Ablation , 2002 .

[101]  Qingchao Han,et al.  Synthesis and Physical Properties of Co3O4 Nanowires , 2007 .

[102]  Younan Xia,et al.  A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. , 2003, Journal of the American Chemical Society.

[103]  Jinlong Yang,et al.  Large-scale synthesis of titanate and anatase tubular hierarchitectures. , 2007, Small.

[104]  G. Tendeloo,et al.  Cu(OH) 2 nanowires, CuO nanowires and CuO nanobelts , 2004 .

[105]  M. Atashbar,et al.  Mechanical and electrical characterization of /spl beta/-Ga/sub 2/O/sub 3/ nanostructures for sensing applications , 2005, IEEE Sensors Journal.

[106]  C. Park,et al.  V2O5 nanowire-based nanoelectronic devices for helium detection , 2005 .

[107]  Tiancheng Wang,et al.  Oxygen sensing characteristics of individual ZnO nanowire transistors , 2004 .

[108]  Y. Im,et al.  Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. , 2008, Small.

[109]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[110]  X. Jiao,et al.  Ultrathin corundum-type In2O3 nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism. , 2006, Chemical communications.

[111]  Xinsheng Peng,et al.  Novel method synthesis of CdO nanowires , 2002 .

[112]  G. Shen,et al.  Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties , 2005 .

[113]  Jun Zhang,et al.  A route to Ag-catalyzed growth of the semiconducting In2O3 nanowires , 2003 .

[114]  Jenshan Lin,et al.  Detection of hydrogen at room temperature with catalyst-coated multiple ZnO nanorods , 2005 .

[115]  Yadong Li,et al.  Catalytic growth of ZnO nanotubes , 2003 .

[116]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[117]  Ning Wang,et al.  Facile One-Pot Solution Phase Synthesis of SnO2 Nanotubes , 2008 .

[118]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[119]  Wenzhong Wang,et al.  Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route , 2002 .

[120]  HYDROTHERMAL SYNTHESIS OF ORIENTED ZNO NANOBELTS AND THEIR TEMPERATURE DEPENDENT PHOTOLUMINESCENCE , 2004 .

[121]  C. Li,et al.  Surface Treatment and Doping Dependence of In2O3 Nanowires as Ammonia Sensors , 2003 .

[122]  Xun Wang,et al.  Single-walled MoO3 nanotubes. , 2008, Journal of the American Chemical Society.

[123]  Xinsheng Peng,et al.  Synthesis and photoluminescence of single-crystalline In2O3 nanowires , 2002 .

[124]  N. Du,et al.  Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li‐Battery Applications , 2007 .

[125]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[126]  Zhong Lin Wang,et al.  Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process , 2004 .

[127]  Dmitri Golberg,et al.  Single‐Crystalline In2O3 Nanotubes Filled with In , 2003 .

[128]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[129]  Dmitri Golberg,et al.  Laser‐Ablation Growth and Optical Properties of Wide and Long Single‐Crystal SnO2 Ribbons , 2003 .

[130]  Lih-Juann Chen,et al.  Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. , 2007, Small.

[131]  Po-Chiang Chen,et al.  Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. , 2008, Nano letters.

[132]  Jinhua Ye,et al.  SrSnO3 Nanostructures: Synthesis, Characterization, and Photocatalytic Properties , 2007 .

[133]  Young Hee Lee,et al.  Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge. , 2000 .

[134]  Xinyu Song,et al.  One-Step Preparation of Single-Crystalline β-MnO2 Nanotubes , 2005 .

[135]  Yunyi Fu,et al.  Synthesis of Fe2O3 nanowires by oxidation of iron , 2001 .

[136]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[137]  Yadong Li,et al.  Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires , 2002 .

[138]  Chongwu Zhou,et al.  Synthesis and electronic transport studies of CdO nanoneedles , 2003 .

[139]  E. Samulski,et al.  Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods. , 2004, Journal of the American Chemical Society.

[140]  S. T. Lee,et al.  p-Type ZnO nanowire arrays. , 2008, Nano letters.

[141]  Xiao Wei Sun,et al.  Field emission from zinc oxide nanopins , 2003 .

[142]  Hidekazu Tanaka,et al.  Epitaxial growth of MgO nanowires by pulsed laser deposition , 2007 .

[143]  Yong Ding,et al.  Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. , 2004, Journal of the American Chemical Society.

[144]  Martin Moskovits,et al.  Detection of CO and O2 Using Tin Oxide Nanowire Sensors , 2003 .

[145]  K. Y. Rajpure,et al.  Room temperature synthesis and characterization of CdO nanowires by chemical bath deposition (CBD) method , 2008 .

[146]  J. Wu,et al.  Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation , 2005 .

[147]  Hui Zhang,et al.  Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process , 2004 .

[148]  Jun Zhang,et al.  Catalyst-assisted vapor-liquid-solid growth of single-crystal Ga2O3 nanobelts. , 2005, The journal of physical chemistry. B.

[149]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[150]  Zhong Lin Wang Oxide nanobelts and nanowires--growth, properties and applications. , 2008, Journal of nanoscience and nanotechnology.

[151]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[152]  P. Ajayan,et al.  Nanostructured VO2 photocatalysts for hydrogen production. , 2008, ACS nano.

[153]  G. Shen,et al.  Characterization and Field‐Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal‐Evaporation Process , 2006 .

[154]  Yubao Li,et al.  Single‐Crystalline α‐Al2O3 Nanotubes Converted from Al4O4C Nanowires , 2005, Advanced materials.

[155]  Xiangyang Ma,et al.  Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. , 2005, The journal of physical chemistry. B.

[156]  D. Tsai,et al.  Preparation of ruthenium dioxide nanorods and their field emission characteristics , 2004 .

[157]  Z. Ren,et al.  Enhanced Field Emission of ZnO Nanowires , 2004 .

[158]  David P. Norton,et al.  Hydrogen and ozone gas sensing using multiple ZnO nanorods , 2005 .

[159]  Wenzhong Wang,et al.  Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach , 2003 .

[160]  Michael H. Huang,et al.  Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts , 2007 .

[161]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[162]  Giorgio Sberveglieri,et al.  Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts , 2005 .

[163]  Q. Wan,et al.  Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. , 2005, Chemical communications.

[164]  Zhong Lin Wang,et al.  Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy , 2004 .

[165]  Guanghou Wang,et al.  A novel wet chemical route to NiO nanowires , 2003 .

[166]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[167]  Y. Nakata,et al.  Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume , 2004 .

[168]  Y. Chen,et al.  Field-emission from long SnO2 nanobelt arrays , 2004 .

[169]  Zhong Lin Wang,et al.  Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. , 2006, Nano letters.

[170]  Dmitri Golberg,et al.  Bulk synthesis of single-crystalline magnesium oxide nanotubes. , 2004, Inorganic chemistry.

[171]  A. Govindaraj,et al.  Oxide nanotubes prepared using carbon nanotubes as templates , 1997 .

[172]  Qing Yang,et al.  Synthesis of NiO nanowires by a sol-gel process , 2005 .

[173]  Xuan Zhang,et al.  Crystalline WO3 nanowires synthesized by templating method , 2003 .

[174]  Xinsheng Peng,et al.  Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties , 2002 .

[175]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[176]  Jordi Arbiol,et al.  High response and stability in CO and humidity measures using a single SnO2 nanowire , 2007 .

[177]  C. Lim,et al.  Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires , 2006 .

[178]  Dionysios D. Dionysiou,et al.  Nanocrystalline TiO2 Photocatalytic Membranes with a Hierarchical Mesoporous Multilayer Structure: Synthesis, Characterization, and Multifunction , 2006 .

[179]  Lisha Zhang,et al.  Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property , 2007 .

[180]  E. Wang,et al.  Tuning the field-emission properties of tungsten oxide nanorods. , 2005, Small.

[181]  Optical sensing of NO2 in tin oxide nanowires at sub-ppm level , 2008 .

[182]  Changdeuck Bae,et al.  Template-directed gas-phase fabrication of oxide nanotubes , 2008 .

[183]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[184]  W. Ueda,et al.  Shape-controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates , 2006 .

[185]  Matteo Ferroni,et al.  Single crystal ZnO nanowires as optical and conductometric chemical sensor , 2007 .

[186]  N. Ramgir,et al.  A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires , 2005 .

[187]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[188]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[189]  T. Mallouk,et al.  Scrolled Sheet Precursor Route to Niobium and Tantalum Oxide Nanotubes , 2007 .