Global envelope tests for spatial processes
暂无分享,去创建一个
Ute Hahn | Pavel Grabarnik | Henri Seijo | Mari Myllymaki | P. Grabarnik | M. Myllymäki | T. Mrkvička | U. Hahn | Henri Seijo | Tom'as Mrkvicka
[1] Sung Nok Chiu,et al. Goodness‐of‐fit test for complete spatial randomness against mixtures of regular and clustered spatial point processes , 2002 .
[2] D. Stoyan,et al. Measuring galaxy segregation with the mark connection function , 2010, 1001.1294.
[3] Richard A. Russell,et al. Analysis of Spatial Point Patterns in Nuclear Biology , 2012, PloS one.
[4] D. Stoyan,et al. Ly-${\mathsf \alpha}$ forest: efficient unbiased estimation of second-order properties with missing data , 2007, astro-ph/0701895.
[5] van Mnm Marie-Colette Lieshout,et al. Spatial point process theory , 2010 .
[6] J. Durbin. Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test , 1971, Journal of Applied Probability.
[7] M.N.M. van Lieshout,et al. A J-function for inhomogeneous point processes , 2010, 1008.4504.
[8] C. Collet,et al. Crown plasticity reduces inter-tree competition in a mixed broadleaved forest , 2013, European Journal of Forest Research.
[9] Peter J. Diggle,et al. Simple Monte Carlo Tests for Spatial Pattern , 1977 .
[10] Dietrich Stoyan,et al. Deviation test construction and power comparison for marked spatial point patterns , 2013, 1306.1028.
[11] B. Ripley. The Second-Order Analysis of Stationary Point Processes , 1976 .
[12] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[13] T. Mattfeldt,et al. Statistical analysis of reduced pair correlation functions of capillaries in the prostate gland , 2006, Journal of microscopy.
[14] J. Ord,et al. Spatial Processes: Models and Applications , 1984 .
[15] S. Berman. Stationary and Related Stochastic Processes , 1967 .
[16] Marc G. Genton,et al. A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric Models Describing Spatial Point Patterns , 2014 .
[17] D. Stoyan,et al. Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .
[18] Dietrich Stoyan. Statistical Analysis of Spatial and Spatio‐Temporal Point Patterns, 3rd edition. P. J. Diggle (2013). Boca Raton: Chapman & Hall/CRC Monographs on Statistics and Applied Probability. 267 pages, ISBN: 978‐1‐4665‐6023‐9. , 2014 .
[19] Michael Sherman. Case Studies In Spatial Point Process Modeling , 2006 .
[20] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[21] F. Marriott,et al. Barnard's Monte Carlo Tests: How Many Simulations? , 1979 .
[22] I. Roberts,et al. Statistical analysis of the distribution of gold particles over antigen sites after immunogold labelling , 1997 .
[23] Brian D. Ripley,et al. Spatial Statistics: Ripley/Spatial Statistics , 2005 .
[24] L. P. Ho. Testing the complete spatial randomness by Diggle ’ s test without an arbitrary upper limit , 2018 .
[25] Adrian Baddeley,et al. spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .
[26] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[27] A. Baddeley,et al. A logistic regression estimating function for spatial Gibbs point processes , 2013 .
[28] Dietrich Stoyan,et al. Correct testing of mark independence for marked point patterns , 2011 .
[29] Zhe Jiang,et al. Spatial Statistics , 2013 .
[30] J. Besag,et al. Generalized Monte Carlo significance tests , 1989 .
[31] A. Hope. A Simplified Monte Carlo Significance Test Procedure , 1968 .
[32] Juan Romo,et al. A half-region depth for functional data , 2011, Comput. Stat. Data Anal..
[33] Torsten Mattfeldt,et al. Statistical analysis of labelling patterns of mammary carcinoma cell nuclei on histological sections , 2009, Journal of microscopy.
[34] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[35] Peter J. Diggle,et al. On parameter estimation and goodness-of-fit testing for spatial point patterns , 1979 .
[36] A. Baddeley,et al. Estimating the J function without edge correction , 1999, math/9910011.
[37] Debashis Kushary,et al. Bootstrap Methods and Their Application , 2000, Technometrics.
[38] B. Ripley. Modelling Spatial Patterns , 1977 .
[39] Jean-Yves Pontailler,et al. Storms drive successional dynamics in natural forests: a case study in Fontainebleau forest (France) , 1997 .
[40] harald Cramer,et al. Stationary And Related Stochastic Processes , 1967 .
[41] M. Dwass. Modified Randomization Tests for Nonparametric Hypotheses , 1957 .
[42] G. A. Barnard,et al. Discussion of Professor Bartlett''s paper , 1963 .
[43] J. Durbin,et al. The first-passage density of the Brownian motion process to a curved boundary , 1992, Journal of Applied Probability.
[44] R. Adler,et al. Random Fields and Geometry , 2007 .
[45] J. Besag,et al. Sequential Monte Carlo p-values , 1991 .
[46] Katja Schladitz,et al. Statistical analysis of intramembranous particles using freeze fracture specimens , 2003, Journal of microscopy.
[47] H. R. Lerche. Boundary Crossing of Brownian Motion , 1986 .
[48] P. Diggle,et al. On tests of spatial pattern based on simulation envelopes , 2014 .
[49] K. K. Berthelsen,et al. Likelihood and Non‐parametric Bayesian MCMC Inference for Spatial Point Processes Based on Perfect Simulation and Path Sampling , 2003 .
[50] T. Subba Rao,et al. Statistics for Spatial Data, Revised Edition, by Noel Cressie. Published by Wiley Classics Library, John Wiley, 2015. Total number of pages: 928. ISBN: 978-1-119-11518-2 , 2016 .
[51] Jorge Mateu,et al. Case Studies in Spatial Point Process Modeling , 2006 .
[52] A. Baddeley,et al. A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.
[53] J. Romo,et al. On the Concept of Depth for Functional Data , 2009 .
[54] S. Berman. Sojourns and Extremes of Stochastic Processes , 1992 .
[55] E. D. Ford,et al. Statistical inference using the g or K point pattern spatial statistics. , 2006, Ecology.
[56] Michael S. Rosenberg,et al. Handbook of spatial point-pattern analysis in ecology , 2015, Int. J. Geogr. Inf. Sci..
[57] G. Baumann,et al. Non-random spatial distribution of intermembraneous particles in red blood cell membrane. , 1990, Pathology, research and practice.
[58] H. Daniels,et al. Approximating the first crossing-time density for a curved boundary , 1996 .
[59] A. Baddeley,et al. Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .
[60] S P Brooks,et al. Finite mixture models for proportions. , 1997, Biometrics.
[61] A. Baddeley,et al. Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.
[62] Jean-Marie Dufour,et al. Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard , 2006 .
[63] M. Schröter,et al. Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest , 2011, European Journal of Forest Research.
[64] M. J. Bayarri,et al. P Values for Composite Null Models , 2000 .
[65] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[66] Tomás Mrkvicka. On Testing of General Random Closed Set Model Hypothesis , 2009, Kybernetika.
[67] Noel A Cressie,et al. Statistics for Spatial Data, Revised Edition. , 1994 .
[68] Samuel Soubeyrand,et al. Goodness-of-fit test of the mark distribution in a point process with non-stationary marks , 2012, Stat. Comput..
[69] James M. Robins,et al. Asymptotic Distribution of P Values in Composite Null Models , 2000 .
[70] Peter J. Diggle,et al. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns , 2013 .
[71] P. Diggle,et al. On parameter estimation for pairwise interaction point processes , 1994 .
[72] M. Asplund,et al. Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.
[73] Jesper Møller,et al. Transforming Spatial Point Processes into Poisson Processes Using Random Superposition , 2012, Advances in Applied Probability.