Global envelope tests for spatial processes

Summary Envelope tests are a popular tool in spatial statistics, where they are used in goodness-of-fit testing. These tests graphically compare an empirical function T(r) with its simulated counterparts from the null model. However, the type I error probability α is conventionally controlled for a fixed distance r only, whereas the functions are inspected on an interval of distances I. In this study, we propose two approaches related to Barnard's Monte Carlo test for building global envelope tests on I: ordering the empirical and simulated functions on the basis of their r-wise ranks among each other, and the construction of envelopes for a deviation test. These new tests allow the a priori choice of the global α and they yield p-values. We illustrate these tests by using simulated and real point pattern data.

[1]  Sung Nok Chiu,et al.  Goodness‐of‐fit test for complete spatial randomness against mixtures of regular and clustered spatial point processes , 2002 .

[2]  D. Stoyan,et al.  Measuring galaxy segregation with the mark connection function , 2010, 1001.1294.

[3]  Richard A. Russell,et al.  Analysis of Spatial Point Patterns in Nuclear Biology , 2012, PloS one.

[4]  D. Stoyan,et al.  Ly-${\mathsf \alpha}$ forest: efficient unbiased estimation of second-order properties with missing data , 2007, astro-ph/0701895.

[5]  van Mnm Marie-Colette Lieshout,et al.  Spatial point process theory , 2010 .

[6]  J. Durbin Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test , 1971, Journal of Applied Probability.

[7]  M.N.M. van Lieshout,et al.  A J-function for inhomogeneous point processes , 2010, 1008.4504.

[8]  C. Collet,et al.  Crown plasticity reduces inter-tree competition in a mixed broadleaved forest , 2013, European Journal of Forest Research.

[9]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .

[10]  Dietrich Stoyan,et al.  Deviation test construction and power comparison for marked spatial point patterns , 2013, 1306.1028.

[11]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[12]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[13]  T. Mattfeldt,et al.  Statistical analysis of reduced pair correlation functions of capillaries in the prostate gland , 2006, Journal of microscopy.

[14]  J. Ord,et al.  Spatial Processes: Models and Applications , 1984 .

[15]  S. Berman Stationary and Related Stochastic Processes , 1967 .

[16]  Marc G. Genton,et al.  A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric Models Describing Spatial Point Patterns , 2014 .

[17]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[18]  Dietrich Stoyan Statistical Analysis of Spatial and Spatio‐Temporal Point Patterns, 3rd edition. P. J. Diggle (2013). Boca Raton: Chapman & Hall/CRC Monographs on Statistics and Applied Probability. 267 pages, ISBN: 978‐1‐4665‐6023‐9. , 2014 .

[19]  Michael Sherman Case Studies In Spatial Point Process Modeling , 2006 .

[20]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[21]  F. Marriott,et al.  Barnard's Monte Carlo Tests: How Many Simulations? , 1979 .

[22]  I. Roberts,et al.  Statistical analysis of the distribution of gold particles over antigen sites after immunogold labelling , 1997 .

[23]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[24]  L. P. Ho Testing the complete spatial randomness by Diggle ’ s test without an arbitrary upper limit , 2018 .

[25]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[26]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[27]  A. Baddeley,et al.  A logistic regression estimating function for spatial Gibbs point processes , 2013 .

[28]  Dietrich Stoyan,et al.  Correct testing of mark independence for marked point patterns , 2011 .

[29]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[30]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[31]  A. Hope A Simplified Monte Carlo Significance Test Procedure , 1968 .

[32]  Juan Romo,et al.  A half-region depth for functional data , 2011, Comput. Stat. Data Anal..

[33]  Torsten Mattfeldt,et al.  Statistical analysis of labelling patterns of mammary carcinoma cell nuclei on histological sections , 2009, Journal of microscopy.

[34]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[35]  Peter J. Diggle,et al.  On parameter estimation and goodness-of-fit testing for spatial point patterns , 1979 .

[36]  A. Baddeley,et al.  Estimating the J function without edge correction , 1999, math/9910011.

[37]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[38]  B. Ripley Modelling Spatial Patterns , 1977 .

[39]  Jean-Yves Pontailler,et al.  Storms drive successional dynamics in natural forests: a case study in Fontainebleau forest (France) , 1997 .

[40]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[41]  M. Dwass Modified Randomization Tests for Nonparametric Hypotheses , 1957 .

[42]  G. A. Barnard,et al.  Discussion of Professor Bartlett''s paper , 1963 .

[43]  J. Durbin,et al.  The first-passage density of the Brownian motion process to a curved boundary , 1992, Journal of Applied Probability.

[44]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[45]  J. Besag,et al.  Sequential Monte Carlo p-values , 1991 .

[46]  Katja Schladitz,et al.  Statistical analysis of intramembranous particles using freeze fracture specimens , 2003, Journal of microscopy.

[47]  H. R. Lerche Boundary Crossing of Brownian Motion , 1986 .

[48]  P. Diggle,et al.  On tests of spatial pattern based on simulation envelopes , 2014 .

[49]  K. K. Berthelsen,et al.  Likelihood and Non‐parametric Bayesian MCMC Inference for Spatial Point Processes Based on Perfect Simulation and Path Sampling , 2003 .

[50]  T. Subba Rao,et al.  Statistics for Spatial Data, Revised Edition, by Noel Cressie. Published by Wiley Classics Library, John Wiley, 2015. Total number of pages: 928. ISBN: 978-1-119-11518-2 , 2016 .

[51]  Jorge Mateu,et al.  Case Studies in Spatial Point Process Modeling , 2006 .

[52]  A. Baddeley,et al.  A non-parametric measure of spatial interaction in point patterns , 1996, Advances in Applied Probability.

[53]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[54]  S. Berman Sojourns and Extremes of Stochastic Processes , 1992 .

[55]  E. D. Ford,et al.  Statistical inference using the g or K point pattern spatial statistics. , 2006, Ecology.

[56]  Michael S. Rosenberg,et al.  Handbook of spatial point-pattern analysis in ecology , 2015, Int. J. Geogr. Inf. Sci..

[57]  G. Baumann,et al.  Non-random spatial distribution of intermembraneous particles in red blood cell membrane. , 1990, Pathology, research and practice.

[58]  H. Daniels,et al.  Approximating the first crossing-time density for a curved boundary , 1996 .

[59]  A. Baddeley,et al.  Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .

[60]  S P Brooks,et al.  Finite mixture models for proportions. , 1997, Biometrics.

[61]  A. Baddeley,et al.  Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.

[62]  Jean-Marie Dufour,et al.  Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard , 2006 .

[63]  M. Schröter,et al.  Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest , 2011, European Journal of Forest Research.

[64]  M. J. Bayarri,et al.  P Values for Composite Null Models , 2000 .

[65]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[66]  Tomás Mrkvicka On Testing of General Random Closed Set Model Hypothesis , 2009, Kybernetika.

[67]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[68]  Samuel Soubeyrand,et al.  Goodness-of-fit test of the mark distribution in a point process with non-stationary marks , 2012, Stat. Comput..

[69]  James M. Robins,et al.  Asymptotic Distribution of P Values in Composite Null Models , 2000 .

[70]  Peter J. Diggle,et al.  Statistical Analysis of Spatial and Spatio-Temporal Point Patterns , 2013 .

[71]  P. Diggle,et al.  On parameter estimation for pairwise interaction point processes , 1994 .

[72]  M. Asplund,et al.  Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti , 2010, 1001.2521.

[73]  Jesper Møller,et al.  Transforming Spatial Point Processes into Poisson Processes Using Random Superposition , 2012, Advances in Applied Probability.