Predicting Single Genes Related to Immune-Relevant Processes

In this paper we address the problem of predicting gene activities by finding gene regulatory dependencies in experimental DNA microarray data. Only few approaches to infer the dependencies of complete gene interconnectivity networks can be found in the literature. Due to the limited number of available data, the inferring problem is under-determined and ambiguous. Therefore, we introduce a new algorithm to infer relationships only between selected genes and the unknown gene network. This method is able to predict gene activation by mathematical modeling of the network and its simulation. The parameters of the mathematical model are determined by optimization with evolutionary algorithms. In this paper we will show that our approach is able to correctly predict gene responses in immune related regulatory processes and correctly identify some of the true genomic relationships of these genes.

[1]  S Fuhrman,et al.  Reveal, a general reverse engineering algorithm for inference of genetic network architectures. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[2]  Hitoshi Iba,et al.  Evolutionary modeling and inference of gene network , 2002, Inf. Sci..

[3]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[4]  Andreas Zell,et al.  Iteratively Inferring Gene Regulatory Networks with Virtual Knockout Experiments , 2004, EvoWorkshops.

[5]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[8]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[9]  Michael G Tovey,et al.  GAAP‐1: a transcriptional activator of p53 and IRF‐1 possesses pro‐apoptotic activity , 2002, EMBO reports.

[10]  Bert Vogelstein,et al.  p53 function and dysfunction , 1992, Cell.

[11]  D Thieffry,et al.  Qualitative analysis of gene networks. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[12]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[13]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[14]  Edgar Wingender,et al.  TRANSPATH®: a high quality database focused on signal transduction : Data integration in functional genomics and proteomics: application to biological pathways , 2004 .

[15]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[16]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[17]  E. Keedwell,et al.  Modelling gene regulatory data using artificial neural networks , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[18]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[19]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[20]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[21]  Peter J. Cullen,et al.  Identification of a specific lns(l,3,4,5)P4-binding protein as a member of the GAP1 family , 1995, Nature.

[22]  Andreas Zell,et al.  Utilizing an island model for EA to preserve solution diversity for inferring gene regulatory networks , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[23]  Masahiro Okamoto,et al.  Development of a System for the Inference of Large Scale Genetic Networks , 2000, Pacific Symposium on Biocomputing.

[24]  Sanjeev Gupta,et al.  Direct Transcriptional Activation of Human Caspase-1 by Tumor Suppressor p53* , 2001, The Journal of Biological Chemistry.

[25]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[26]  Satoru Miyano,et al.  Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Networks , 2004, J. Bioinform. Comput. Biol..

[27]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[28]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[29]  H. Hauser,et al.  IFN-Stimulated Gene 15 Is Synergistically Activated Through Interactions Between the Myelocyte/Lymphocyte-Specific Transcription Factors, PU.1, IFN Regulatory Factor-8/IFN Consensus Sequence Binding Protein, and IFN Regulatory Factor-4: Characterization of a New Subtype of IFN-Stimulated Response El , 2002, The Journal of Immunology.

[30]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[31]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[32]  Andreas Zell,et al.  A memetic clustering algorithm for the functional partition of genes based on the gene ontology , 2004, 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[33]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[34]  T. Shin,et al.  p53 stimulates transcription from the human transforming growth factor alpha promoter: a potential growth-stimulatory role for p53 , 1995, Molecular and cellular biology.

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  Gary D. Stormo,et al.  Modeling Regulatory Networks with Weight Matrices , 1998, Pacific Symposium on Biocomputing.