New lower bounds for the second variable Zagreb index

The aim of this paper is to obtain new sharp inequalities for a large family of topological indices, including the second variable Zagreb index $$M_2^{\alpha }$$M2α, and to characterize the set of extremal graphs with respect to them. Our main results provide lower bounds on this family of topological indices involving just the minimum and the maximum degree of the graph. These inequalities are new even for the Randić, the second Zagreb and the modified Zagreb indices.

[1]  N. Trinajstic,et al.  On reformulated Zagreb indices , 2004, Molecular Diversity.

[2]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[3]  J. M. Sigarreta Bounds for The Geometric-Arithmetic Index of a Graph , 2015 .

[4]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[5]  Bolian Liu,et al.  Some properties of the first general Zagreb index , 2010, Australas. J Comb..

[6]  Vesna Andova,et al.  Variable Zagreb Indices and Karamata's Inequality , 2011 .

[7]  N. Trinajstic,et al.  On use of the variable Zagreb vM2 index in QSPR: boiling points of benzenoid hydrocarbons. , 2004, Molecules.

[8]  Shenggui Zhang,et al.  Bicyclic graphs with the first three smallest and largest values of the first general Zagreb index , 2006 .

[9]  Emina I. Milovanovic,et al.  A note on the first reformulated Zagreb index , 2016, Appl. Math. Comput..

[10]  I. Gutman,et al.  Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices , 2013 .

[11]  S. Nikolic,et al.  On Variable Zagreb Indices , 2004 .

[12]  Milan Randic,et al.  Variable Connectivity Index for Cycle-Containing Structures , 2001, J. Chem. Inf. Comput. Sci..

[13]  M. Randic On computation of optimal parameters for multivariate analysis of structure‐property relationship , 1991 .

[14]  D. Vukicevic,et al.  Bond Additive Modeling 2. Mathematical Properties of Max-min Rodeg Index , 2010 .

[15]  Siemion Fajtlowicz,et al.  On conjectures of Graffiti , 1988, Discret. Math..

[16]  M. Randic Novel graph theoretical approach to heteroatoms in quantitative structure—activity relationships , 1991 .

[17]  I. Gutman Degree-Based Topological Indices , 2013 .

[18]  Jos'e M. Rodr'iguez,et al.  New lower bounds for the Geometric-Arithmetic index , 2017, 1703.05524.

[19]  M. Randic Characterization of molecular branching , 1975 .

[20]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[21]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[22]  MODIFIED NARUMI-KATAYAMA INDEX , 2012 .

[23]  Bo Zhou,et al.  On general sum-connectivity index , 2010 .