Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology

Abstract Micro-scale analytical techniques permit correlation of chemistry with morphology of individual Proterozoic acritarchs (organic-walled microfossils), and thus provide new approaches for elucidating their biological affinities. A combination of micro-Fourier transform infrared (FTIR) spectroscopy and laser micro-Raman spectroscopy was used to investigate the organic structure and composition of individual acritarchs. Well preserved Neoproterozoic acritarchs from the Tanana Formation, Australia (ca. 590–565 Ma), and Mesoproterozoic acritarchs from the Roper Group (1.5–1.4 Ga), Australia, and Ruyang Group, China (1.4–1.3 Ga, age poorly resolved but certainly >1000 Ma and H stretching bands in the 2900 cm−1 region relative to the C C aromatic ring stretching band at 1600 cm−1. This FTIR spectrum is consistent with the FTIR spectra obtained from algaenans isolated from extant chlorophyte and eustigmatophyte microalgae. FTIR spectra of Leiosphaeridia sp. from the Tanana Formation contain a less intense aliphatic C H stretching band relative to the C C aromatic ring stretching band. By comparison, the spectra acquired from the Mesoproterozoic acritarchs were dominated by C C aromatic ring stretching bands at 1600 cm−1 relative to moderate-weak CH3 terminal groups (1345 cm−1), C H aliphatic stretching (3000–2700 cm−1), and C O (1710 cm−1), although some differences in biopolymer composition occurred between species. Curve-fitting of the aliphatic C Hx stretching region provides greater insight into the aliphatic structures of the acritarchs. The CH2/CH3 intensity ratio can be used to assess the relative chain length and degree of branching. Organic material in the Tanarium conoideum consists of straight long chain hydrocarbons, while the other acritarchs contain hydrocarbons consisting of short chains that are highly branched. In this study it was found that Raman spectroscopy does not provide additional information about biopolymer composition of Proterozoic acritarchs, but rather offers complementary data regarding the aromaticity and degree of saturation of the macromolecular structure of acritarch cysts.

[1]  A. J. Kaufman,et al.  Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .

[2]  D. B. Fischbach,et al.  New Lines in the Raman Spectra of Carbons and Graphite , 1978 .

[3]  David D. Wynn-Williams,et al.  Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces , 2002, International Journal of Astrobiology.

[4]  C. Snape,et al.  Release of bound aromatic hydrocarbons from late Archean and mesoproterozoic kerogens via hydropyrolysis , 2003 .

[5]  Talyzina,et al.  Biogeochemical evidence for dinoflagellate ancestors in the early cambrian , 1998, Science.

[6]  J. Heslop-Harrison Pollen: Development and Physiology , 1971 .

[7]  A. Knoll,et al.  TEM evidence for eukaryotic diversity in mid‐Proterozoic oceans , 2004 .

[8]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[9]  Jean-Noël Rouzaud,et al.  Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy , 1985 .

[10]  G. Shaw,et al.  Recent Developments in the Chemistry, Biochemistry, Geochemistry and Post-tetrad Ontogeny of Sporopollenins Derived from Pollen and Spore Exines , 1971 .

[11]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  John P. Kokinos Studies on the cell wall of dinoflagellate resting cysts : morphological development, ultrastructure, and chemical composition , 1994 .

[13]  Talyzina,et al.  Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. , 2000, Review of palaeobotany and palynology.

[14]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[15]  S. Kelemen,et al.  Maturity trends in Raman spectra from kerogen and coal , 2001 .

[16]  G. Versteegh,et al.  Resistant macromolecules of extant and fossil microalgae , 2004 .

[17]  N. Butterfield A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion , 2004, Paleobiology.

[18]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[19]  A. Knoll,et al.  VASE-SHAPED MICROFOSSILS FROM THE NEOPROTEROZOIC CHUAR GROUP, GRAND CANYON: A CLASSIFICATION GUIDED BY MODERN TESTATE AMOEBAE , 2003, Journal of Paleontology.

[20]  J. M. Moldowan,et al.  Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers , 2000 .

[21]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[22]  J. Jansonius,et al.  Palynology : principles and applications , 1997 .

[23]  W. R. Evitt Sporopollenin Dinoflagellate Cysts: Their Morphology and Interpretation , 1985 .

[24]  M. Walter,et al.  A possible chlorophycean affinity of some Neoproterozoic acritarchs , 1999 .

[25]  N. Szeverenyi,et al.  Selective preservation and origin of petroleum-forming aquatic kerogen , 1983, Nature.

[26]  J. Rouzaud,et al.  Carbon films: Structure and microtexture (optical and electron microscopy, Raman spectroscopy) , 1983 .

[27]  M. Walter,et al.  Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation , 2000 .

[28]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[29]  D. Houseknecht,et al.  Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study , 1998 .

[30]  S. Derenne,et al.  First example of an algaenan yielding an aromatic-rich pyrolysate. Possible geochemical implications on marine kerogen formation , 1996 .

[31]  R. W. Snyder,et al.  Concerning the Application of FT-IR to the Study of Coal: A Critical Assessment of Band Assignments and the Application of Spectral Analysis Programs , 1981 .

[32]  S. Derenne,et al.  Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum , 1992 .

[33]  N. Butterfield Probable Proterozoic fungi , 2005, Paleobiology.

[34]  P. R. Solomon,et al.  FT-i.r. analysis of coal: 2. Aliphatic and aromatic hydrogen concentration , 1988 .

[35]  S. Derenne,et al.  Pyrolysis of immature Torbanite and of the resistant biopolymer (PRB A) isolated from extant alga botryococcus braunii. Mechanism of formation and structure of Torbanite , 1986 .

[36]  S. Derenne,et al.  A reappraisal of kerogen formation , 1989 .

[37]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[38]  A. Knoll,et al.  Recognizing and Interpreting the Fossils of Early Eukaryotes , 2003, Origins of life and evolution of the biosphere.

[39]  D. Anderson,et al.  Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst , 1998 .

[40]  D. Wall Evidence from Recent Plankton Regarding the Biological Affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958 , 1962, Geological Magazine.

[41]  N. Siddique,et al.  Raman spectroscopy of carbon-containing particles , 2001 .

[42]  P. Jagodzinski,et al.  Raman spectroscopic characterization of graphites: A re-evaluation of spectra/ structure correlation , 1993 .

[43]  J. Rouzaud,et al.  RAMAN MICROSPECTROMETRY OF ACCUMULATED NON-GRAPHITIZED SOLID BITUMENS , 1997 .

[44]  J. W. Leeuw,et al.  Origin of Messel Oil Shale kerogen , 1988, Nature.

[45]  J. Senftle,et al.  Vitrinite Reflectance as a Tool To Assess Thermal Maturity: Chapter 12: GEOCHEMICAL METHODS AND EXPLORATION , 1991 .

[46]  S. Derenne,et al.  Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae , 1999 .

[47]  R. Nemanich,et al.  First- and second-order Raman scattering from finite-size crystals of graphite , 1979 .

[48]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[49]  E. Javaux,et al.  A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs , 2006 .

[50]  C. Largeau,et al.  An improved method for the isolation of artifact-free algaenans from microalgae , 1998 .

[51]  H. Grenfell,et al.  Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”) , 1995 .

[52]  R. Stancliffe,et al.  The Micrhystridium and Veryhachium complexes (Acritarcha: Acanthomorphitae and Polygonomorphitae): a taxonomic reconsideration , 1994 .

[53]  R. Lin,et al.  Studying individual macerals using i.r. microspectrometry, and implications on oil versus gas/condensate proneness and “low-rank” generation , 1993 .

[54]  Helen Tappan,et al.  The Paleobiology of Plant Protists , 1981 .

[55]  C. Largeau,et al.  Artifactual origin of mycobacterial bacteran. Formation of melanoidin-like artifact macromolecular material during the usual isolation process , 1997 .

[56]  Göran Kjellström Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic Leiospheres , 1968 .