Differential GPS: An Enabling Technology for Formation Flying Satellites

The differential processing of carrier phase measurements from Global Navigation Satellite Systems (GNSS) is a well know technique for relative positioning in terrestrial and aeronautical applications. Over the past decade intensive research has been conducted to demonstrate its suitability for high-precision relative navigation of spacecraft in low Earth orbit (LEO). This chapter describes the fundamental concepts of differential GNSS and its application to spacecraft formation flying. A review of past achievements is given and the practical aspects of differential GPS are discussed for real-time and offline navigation in the upcoming PRISMA and TerraSAR-X missions.

[1]  Oliver Montenbruck,et al.  GPS for Microsatellites – Status and Perspectives , 2008 .

[2]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[3]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1993, manuscripta geodaetica.

[4]  Sien-Chong Wu,et al.  Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters With GPS Bias Fixing , 2006 .

[5]  Isao Kawano Masaaki Mokuno Toru Kasai Takashi Suzuki,et al.  First Autonomous Rendezvous using Relative GPS Navigation by ETS-VII , 1999 .

[6]  Oliver Montenbruck,et al.  Reduced dynamic orbit determination using GPS code and carrier measurements , 2005 .

[7]  Oliver Montenbruck,et al.  TerraSAR-X Precise Trajectory Estimation and Quality Assessment , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[8]  F. Busse Precise formation-state estimation in low earth orbit using carrier differential GPS , 2003 .

[9]  Takuji Ebinuma,et al.  Precision spacecraft rendezvous using global positioning system : an integrated hardware approach , 2001 .

[10]  O. Montenbruck,et al.  Relative Orbit Control Design for the PRISMA Formation Flying Mission , 2006 .

[11]  Eberhard Gill,et al.  PRISMA - AN AUTONOMOUS FORMATION FLYING MISSION , 2006 .

[12]  Gregory W. Heckler,et al.  A GPS Receiver for Lunar Missions , 2008 .

[13]  Eberhard Gill,et al.  Mission Design of the Dutch-Chinese FAST Micro-Satellite Mission , 2010 .

[14]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[16]  Oliver Montenbruck,et al.  GPS-Based Real-Time Navigation for the PRISMA Formation Flying Mission , 2006 .

[17]  Yoke T. Yoon,et al.  Antenna phase center calibration for precise positioning of LEO satellites , 2009 .

[18]  Gabriel Hugh Elkaim,et al.  Global Positioning System (GPS) , 2006 .

[19]  Mark L. Psiaki,et al.  Relative Navigation of High-Altitude Spacecraft Using Dual-Frequency Civilian CDGPS , 2005 .

[20]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[21]  Oliver Montenbruck,et al.  Precise GRACE baseline determination using GPS , 2005 .

[22]  O. Montenbruck,et al.  Real-Time Navigation of Formation-Flying Spacecraft Using Global-Positioning-System Measurements , 2005 .

[23]  Gerhard Beutler,et al.  Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data , 2006 .