Neural networks for protein structure and function prediction and dynamic analysis

[1]  K. Tomii,et al.  DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment , 2020, BMC Bioinformatics.

[2]  David T. Jones,et al.  Improved protein structure prediction using potentials from deep learning , 2020, Nature.

[3]  Yan Wang,et al.  Deep learning for mining protein data , 2019, Briefings Bioinform..

[4]  David T Jones,et al.  Recent developments in deep learning applied to protein structure prediction , 2019, Proteins.

[5]  Yuko Tsuchiya,et al.  Autoencoder-Based Detection of Dynamic Allostery Triggered by Ligand Binding Based on Molecular Dynamics , 2019, J. Chem. Inf. Model..

[6]  Martin Weigt,et al.  Selection of sequence motifs and generative Hopfield-Potts models for protein families , 2019, bioRxiv.

[7]  Christine Peter,et al.  EncoderMap: Dimensionality Reduction and Generation of Molecule Conformations. , 2019, Journal of chemical theory and computation.

[8]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[9]  Jun Sese,et al.  Compound‐protein interaction prediction with end‐to‐end learning of neural networks for graphs and sequences , 2018, Bioinform..

[10]  Thomas Blaschke,et al.  The rise of deep learning in drug discovery. , 2018, Drug discovery today.

[11]  Guy Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2010, Nucleic Acids Res..

[12]  Andriy Kryshtafovych,et al.  Assessment of contact predictions in CASP12: Co‐evolution and deep learning coming of age , 2017, Proteins.

[13]  A. Tramontano,et al.  New encouraging developments in contact prediction: Assessment of the CASP11 results , 2016, Proteins.

[14]  Ruth Nussinov,et al.  Allostery: An Overview of Its History, Concepts, Methods, and Applications , 2016, PLoS Comput. Biol..

[15]  Jianlin Cheng,et al.  CONFOLD: Residue‐residue contact‐guided ab initio protein folding , 2015, Proteins.

[16]  J. Guan,et al.  Improving compound-protein interaction prediction by building up highly credible negative samples. , 2015, Bioinformatics.

[17]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[18]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[19]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[20]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[21]  Søren Toxvaerd,et al.  Energy conservation in molecular dynamics simulations of classical systems. , 2012, The Journal of chemical physics.

[22]  Guy Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[23]  G. Cochrane,et al.  The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..

[24]  Jun Zhang,et al.  Crystallographic and nuclear magnetic resonance evaluation of the impact of peptide binding to the second PDZ domain of protein tyrosine phosphatase 1E. , 2010, Biochemistry.

[25]  Fabrizio Costa,et al.  Fast Neighborhood Subgraph Pairwise Distance Kernel , 2010, ICML.

[26]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[27]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[28]  Andrew L. Lee,et al.  Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. , 2004, Journal of molecular biology.

[29]  D. Dryden,et al.  Allostery without conformational change , 1984, European Biophysics Journal.

[30]  A. Larimore,et al.  Energy conservation. , 1972, Science.

[31]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[32]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..