GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
暂无分享,去创建一个
Stephen J. Roberts | Matt J. Jarvis | S. Roberts | M. Jarvis | I. Almosallam | Ibrahim A. Almosallam
[1] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[2] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[3] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[4] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[5] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.
[6] Eibe Frank,et al. Accurate photometric redshift probability density estimation – method comparison and application , 2015, 1503.08215.
[7] N. Davey,et al. Photometric redshift estimation using Gaussian processes , 2009 .
[8] M. Way,et al. NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY , 2009, 0905.4081.
[9] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[10] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[11] Carl E. Rasmussen,et al. Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..
[12] Hilo,et al. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.
[13] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[14] Ashok Srivastava,et al. Stable and Efficient Gaussian Process Calculations , 2009, J. Mach. Learn. Res..
[15] James E. Geach,et al. Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys , 2011, 1110.0005.
[16] Alfred O. Hero,et al. Covariance Estimation in High Dimensions Via Kronecker Product Expansions , 2013, IEEE Transactions on Signal Processing.
[17] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[18] Stephen J. Roberts,et al. A Sparse Gaussian Process Framework for Photometric Redshift Estimation , 2015, ArXiv.
[19] Adam O. Kalinich,et al. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.
[20] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[21] C. B. D'Andrea,et al. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.
[22] A. Fontana,et al. Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS , 2003, astro-ph/0312064.
[23] G. Zamorani,et al. The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .
[24] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[25] Yunong Zhang,et al. Time-series Gaussian Process Regression Based on Toeplitz Computation of O(N2) Operations and O(N)-level Storage , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[26] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[27] M. Fairbairn,et al. GAz: a genetic algorithm for photometric redshift estimation , 2014, 1412.5997.
[28] M. Brescia,et al. A catalogue of photometric redshifts for the SDSS-DR9 galaxies , 2014, 1407.2527.
[29] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[30] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[31] Manda Banerji,et al. A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies , 2008, 0812.3831.
[32] Michael E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..
[33] S Roberts,et al. Gaussian processes for time-series modelling , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[34] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..