Lipid biomolecules in silica sinters: indicators of microbial biodiversity.

To explore further the diversity of the microorganisms and their relationship with geothermal sinters, we examined the lipids preserved in six sinters associated with four different hot spring (58-82 degrees C) areas of the Taupo Volcanic Zone (TVZ), New Zealand. These sinters contain microbial remains, but the process of mineralization has rendered them largely unidentifiable. Dominant lipids include free fatty acids, 1,2-diacylglycerophospholipids, 1,2-di-O-alkylglycerols, glycerol dialkylglycerol tetraethers and 1-O-alkylglycerols. These confirm the presence and, in some cases, high abundances of bacteria in all six sinters and archaea in four of the six sinter samples; in addition, the presence of novel macrocyclic diethers and unusual distributions of monoethers and diethers suggest the presence of previously uncharacterized bacteria. The lipid distributions are also markedly dissimilar among the four sites; for example, novel macrocyclic diethers are restricted to the Rotokawa samples while particularly abundant monoethers occur only in the Orakei Korako sample. Thus, biomarkers can provide crucial insight into the complex community structure of thermophilic microorganisms, including both archaea and bacteria, involved with biogenic silica sinter formation.

[1]  K. Konhauser,et al.  The dynamics of cyanobacterial silicification: an infrared micro-spectroscopic investigation 1 1 Associate editor: J. P. Amend , 2004 .

[2]  M. Tobin,et al.  Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy , 2004 .

[3]  J. Farmer,et al.  Lipid biomarker and carbon isotopic signatures for stromatolite‐forming, microbial mat communities and Phormidium cultures from Yellowstone National Park , 2004 .

[4]  L. Benning,et al.  Experimental studies on New Zealand hot spring sinters: rates of growth and textural development , 2003 .

[5]  L. Forney,et al.  CH 4 -consuming microorganisms and the formation of carbonate crusts at cold seeps , 2002 .

[6]  D. M. Ward,et al.  Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Roseiflexus castenholzii and hot spring microbial mats , 2002, Archives of Microbiology.

[7]  B. Jones,et al.  Biogenicity of gold- and silver-bearing siliceous sinters forming in hot (75°C) anaerobic spring-waters of Champagne Pool, Waiotapu, North Island, New Zealand , 2001, Journal of the Geological Society.

[8]  R. Huber,et al.  Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with Those ofAquificales Representatives , 2001, Applied and Environmental Microbiology.

[9]  D. G. Adams,et al.  Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites , 2001 .

[10]  B. Jones,et al.  Microbial Construction of Siliceous Stalactites at Geysers and Hot Springs: Examples from the Whakarewarewa Geothermal Area, North Island, New Zealand , 2001 .

[11]  V. Thiel,et al.  Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat , 2001 .

[12]  B. Jørgensen,et al.  Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane , 2001 .

[13]  I. Head,et al.  Environmental influence on the biohopanoid composition of recent sediments , 2000 .

[14]  D. M. Ward,et al.  Autotrophy of green non-sulphur bacteria in hot spring microbial mats: biological explanations for isotopically heavy organic carbon in the geological record. , 2000, Environmental microbiology.

[15]  D. M. Ward,et al.  All-cis hentriaconta-9,15,22-triene in microbial mats formed by the phototrophic prokaryote Chloroflexus. , 1999, Organic geochemistry.

[16]  E. Suess,et al.  Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids , 1999, Naturwissenschaften.

[17]  B. Jones,et al.  Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya Rift Valley , 1998 .

[18]  Michael R. Rosen,et al.  Microbial Biofacies in Hot-Spring Sinters: A Model Based on Ohaaki Pool, North Island, New Zealand , 1998 .

[19]  S. Carroll,et al.  Amorphous silica precipitation (60 to 120°C): comparison of laboratory and field rates , 1998 .

[20]  R. Huber,et al.  2,6,10,15,19-Pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei , 1997 .

[21]  B. Jones,et al.  Primary silica oncoids from Orakeikorako Hot Springs, North Island, New Zealand , 1996 .

[22]  B. Jones,et al.  High-temperature (>90°C) calcite precipitation at Waikite Hot Springs, North Island, New Zealand , 1996, Journal of the Geological Society.

[23]  R. Huber,et al.  Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov. , 1996, Systematic and applied microbiology.

[24]  Todd G. Caldwell,et al.  Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation , 1995 .

[25]  Michael McWilliams,et al.  Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review , 1995 .

[26]  Y. Koga,et al.  Two new phospholipids, hydroxyarchaetidylglycerol and hydroxyarchaetidylethanolamine, from the Archaea Methanosarcina barkeri. , 1995, Biochimica et biophysica acta.

[27]  J. G. Kuenen,et al.  Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats , 1994, Applied and environmental microbiology.

[28]  I. Ekiel,et al.  Hydroxydiether Lipid Structures in Methanosarcina spp. and Methanococcus voltae , 1993, Applied and environmental microbiology.

[29]  R. Huber,et al.  Aquifex pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine Hyperthermophilic Hydrogen-Oxidizing Bacteria , 1992 .

[30]  D. M. Ward,et al.  Biogeochemistry of hot spring environments: 2. Lipid compositions of Yellowstone (Wyoming, U.S.A.) cyanobacterial and Chloroflexus mats , 1992 .

[31]  D. M. Ward,et al.  Biogeochemistry of hot spring environments 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat , 1992 .

[32]  D. M. Ward,et al.  Biogeochemistry of hot spring environments: Extractable lipids of a cyanobacterial mat , 1988 .

[33]  J. L. Pond,et al.  Archaebacterial ether lipids and chemotaxonomy , 1986 .

[34]  J. L. Pond,et al.  Long-Chain Diols: A New Class of Membrane Lipids from a Thermophilic Bacterium , 1986, Science.

[35]  D. M. Ward,et al.  Archaebacterial lipids in hot-spring microbial mats , 1985, Nature.

[36]  A. Gliozzi,et al.  Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria , 1983 .

[37]  R. Seifert,et al.  Unexpected occurrence of hopanoids at gas seeps in the Black Sea , 2003 .

[38]  Y. Itoh,et al.  Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature , 2001, Lipids.

[39]  B. Jones,et al.  Microbial Precipitates Around Continental Hot Springs and Geysers , 2000 .

[40]  B. Jones,et al.  Biogenicity of Silica Precipitation Around Geysers and Hot-Spring Vents, North Island, New Zealand , 1997 .

[41]  D. M. Ward,et al.  Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria , 1991 .

[42]  R. Krupp,et al.  Transport and deposition of metals in the Rotokawa geothermal system, New Zealand , 1990 .

[43]  G. Eglinton,et al.  Lipid chemistry of Icelandic hot spring microbial mats , 1990 .

[44]  G. Ourisson,et al.  Prokaryotic hopanoids and other polyterpenoid sterol surrogates. , 1987, Annual review of microbiology.

[45]  J. Zeikus,et al.  Iso- and Anteiso-Branched Glycerol Diethers of the Thermophilic Anaerobe Thermodesulfotobacterium commune. , 1983, Systematic and applied microbiology.

[46]  R. Henley,et al.  Geothermal systems ancient and modern: a geochemical review , 1983 .