Lift-and-Project Integrality Gaps for the Traveling Salesperson Problem

We study the lift-and-project procedures of Lov{\'a}sz-Schrijver and Sherali-Adams applied to the standard linear programming relaxation of the traveling salesperson problem with triangle inequality. For the asymmetric TSP tour problem, Charikar, Goemans, and Karloff (FOCS 2004) proved that the integrality gap of the standard relaxation is at least 2. We prove that after one round of the Lov{\'a}sz-Schrijver or Sherali-Adams procedures, the integrality gap of the asymmetric TSP tour problem is at least 3/2, with a small caveat on which version of the standard relaxation is used. For the symmetric TSP tour problem, the integrality gap of the standard relaxation is known to be at least 4/3, and Cheung (SIOPT 2005) proved that it remains at least 4/3 after $o(n)$ rounds of the Lov{\'a}sz-Schrijver procedure, where $n$ is the number of nodes. For the symmetric TSP path problem, the integrality gap of the standard relaxation is known to be at least 3/2, and we prove that it remains at least 3/2 after $o(n)$ rounds of the Lov{\'a}sz-Schrijver procedure, by a simple reduction to Cheung's result.

[1]  Michael Lampis Improved Inapproximability for TSP , 2012, APPROX-RANDOM.

[2]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[3]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[4]  András Sebő Eight-Fifth approximation for the path TSP , 2013, IPCO 2013.

[5]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[6]  R. Ravi,et al.  The Directed Minimum Latency Problem , 2008, APPROX-RANDOM.

[7]  András Sebö,et al.  Eight-Fifth Approximation for the Path TSP , 2012, IPCO.

[8]  Wenceslas Fernandez de la Vega,et al.  Linear programming relaxations of maxcut , 2007, SODA '07.

[9]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[10]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[11]  Sanjeev Arora,et al.  Towards Strong Nonapproximability Results in the Lovász-Schrijver Hierarchy , 2005, STOC '05.

[12]  Madhur Tulsiani,et al.  Convex Relaxations and Integrality Gaps , 2012 .

[13]  Viswanath Nagarajan On the LP Relaxation of the Asymmetric Traveling Salesman Path Problem , 2008, Theory Comput..

[14]  KleinbergRobert,et al.  Improving Christofides' Algorithm for the s-t Path TSP , 2015 .

[15]  Madhur Tulsiani,et al.  SDP Gaps from Pairwise Independence , 2012, Theory Comput..

[16]  Ola Svensson,et al.  Approximating Graphic TSP by Matchings , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[17]  Amin Saberi,et al.  The asymmetric traveling salesman problem on graphs with bounded genus , 2009, SODA '11.

[18]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[19]  Marcin Mucha 13/9-approximation for Graphic TSP , 2012, STACS.

[20]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[21]  Philip N. Klein,et al.  A Linear-Time Approximation Scheme for TSP in Undirected Planar Graphs with Edge-Weights , 2008, SIAM J. Comput..

[22]  Toniann Pitassi,et al.  Integrality gaps of 2 - o(1) for Vertex Cover SDPs in the Lovész-Schrijver Hierarchy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[23]  Moses Charikar,et al.  Integrality gaps for Sherali-Adams relaxations , 2009, STOC '09.

[24]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[25]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[26]  Madhur Tulsiani,et al.  Optimal Sherali-Adams Gaps from Pairwise Independence , 2009, APPROX-RANDOM.

[27]  L. Wolsey Heuristic analysis, linear programming and branch and bound , 1980 .

[28]  Santosh S. Vempala,et al.  On The Approximability Of The Traveling Salesman Problem , 2006, Comb..

[29]  Kevin K. H. Cheung On Lov[a-acute]sz--Schrijver Lift-and-Project Procedures on the Dantzig--Fulkerson--Johnson Relaxation of the TSP , 2005, SIAM J. Optim..

[30]  Michel X. Goemans,et al.  On the Integrality Ratio for the Asymmetric Traveling Salesman Problem , 2006, Math. Oper. Res..

[31]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[32]  Mohit Singh,et al.  An Improved Integrality Gap for Asymmetric TSP Paths , 2013, Math. Oper. Res..

[33]  A. J.,et al.  Analysis of Christofides ' heuristic : Some paths are more difficult than cycles , 2002 .

[34]  Amin Saberi,et al.  An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem , 2010, SODA '10.

[35]  Anupam Gupta,et al.  Sparsest cut on bounded treewidth graphs: algorithms and hardness results , 2013, STOC '13.

[36]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[37]  David B. Shmoys,et al.  LP-Based Approximation Algorithms for Traveling Salesman Path Problems , 2011, ArXiv.

[38]  David P. Williamson,et al.  Analyzing the Held-Karp TSP Bound: A Monotonicity Property with Application , 1990, Inf. Process. Lett..

[39]  Philip N. Klein,et al.  A polynomial-time approximation scheme for weighted planar graph TSP , 1998, SODA '98.

[40]  Madhur Tulsiani,et al.  Tight integrality gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut , 2007, STOC '07.

[41]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[42]  Mohammad R. Salavatipour,et al.  Asymmetric traveling salesman path and directed latency problems , 2009, SODA '10.

[43]  Thành Nguyen,et al.  A simple LP relaxation for the asymmetric traveling salesman problem , 2008, Mathematical Programming.

[44]  Toniann Pitassi,et al.  Integrality Gaps of 2-o(1) for Vertex Cover SDPs in the Lov[a-acute]sz--Schrijver Hierarchy , 2010, SIAM J. Comput..

[45]  Madhur Tulsiani Lovász‐Schrijver Reformulation , 2011 .

[46]  David B. Shmoys,et al.  Improving christofides' algorithm for the s-t path TSP , 2011, STOC '12.

[47]  William J. Cook,et al.  Cook. The Traveling Salesman Problem: A Computational Study. , 2022 .

[48]  Mohit Singh,et al.  A Randomized Rounding Approach to the Traveling Salesman Problem , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[49]  Jens Vygen,et al.  Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs , 2012, ArXiv.

[50]  Mohit Singh,et al.  Improved Approximation Ratios for Traveling Salesperson Tours and Paths in Directed Graphs , 2007, APPROX-RANDOM.