Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition

[1]  Shuichang Zhang,et al.  Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran–Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle , 2018 .

[2]  E. Stüeken,et al.  Biomass recycling and Earth’s early phosphorus cycle , 2017, Science Advances.

[3]  Yuehua Wu,et al.  Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation , 2017, Scientific Reports.

[4]  Yosuke Hoshino,et al.  The rise of algae in Cryogenian oceans and the emergence of animals , 2017, Nature.

[5]  A. Knoll Biogeochemistry: Food for early animal evolution , 2017, Nature.

[6]  A. Knoll,et al.  Early photosynthetic eukaryotes inhabited low-salinity habitats , 2017, Proceedings of the National Academy of Sciences.

[7]  G. Wörheide,et al.  Dating early animal evolution using phylogenomic data , 2017, Scientific Reports.

[8]  Yuan-long Zhao,et al.  Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian? , 2017 .

[9]  Hua Zhang,et al.  Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran–Cambrian transition: Evidence from western Zhejiang, South China , 2017 .

[10]  W. Fischer,et al.  Evolution of the global phosphorus cycle , 2016, Nature.

[11]  R. Buick,et al.  The evolution of Earth's biogeochemical nitrogen cycle , 2016 .

[12]  Yuan-long Zhao,et al.  A highly redox-heterogeneous ocean in South China during the early Cambrian (∼529–514 Ma): Implications for biota-environment co-evolution , 2016 .

[13]  H. Strauss,et al.  Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran–Cambrian transition , 2016 .

[14]  A. Knoll,et al.  The Ecological Physiology of Earth's Second Oxygen Revolution , 2015 .

[15]  P. Sánchez‐Baracaldo Origin of marine planktonic cyanobacteria , 2015, Scientific Reports.

[16]  N. Planavsky,et al.  Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems , 2015, Scientific Reports.

[17]  S. Yao,et al.  Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform, South China: Evidence from nitrogen and organic carbon isotopes , 2015 .

[18]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[19]  Xi Chen,et al.  Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals , 2015, Nature Communications.

[20]  C. Cai,et al.  Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze ocean , 2015, Journal of the Geological Society.

[21]  N. Butterfield Early evolution of the Eukaryota , 2015 .

[22]  D. Canfield,et al.  Oxygen and animal evolution: Did a rise of atmospheric oxygen “trigger” the origin of animals? , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  D. Canfield,et al.  Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation , 2014 .

[24]  A. Curtis,et al.  Ediacaran metazoan reefs from the Nama Group, Namibia , 2014, Science.

[25]  M. Kunzmann,et al.  Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective , 2014 .

[26]  Lei Xiang,et al.  Redox condition during Ediacaran–Cambrian transition in the Lower Yangtze deep water basin, South China: constraints from iron speciation and δ13Corg in the Diben section, Zhejiang , 2014 .

[27]  Jing Huang,et al.  A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform, South China , 2014 .

[28]  M. G. Mángano,et al.  Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks , 2014, Proceedings of the Royal Society B: Biological Sciences.

[29]  F. Macdonald,et al.  Trace Fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: Complex Feeding Patterns Five Million Years Before The Precambrian–Cambrian Boundary , 2014 .

[30]  T. Lenton,et al.  Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era , 2014 .

[31]  J. Raven,et al.  A Neoproterozoic Transition in the Marine Nitrogen Cycle , 2014, Current Biology.

[32]  F. Morel,et al.  Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia , 2014, Proceedings of the National Academy of Sciences.

[33]  U. Struck,et al.  Nitrogen and organic carbon isotope stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian transition in South China , 2014 .

[34]  D. Canfield,et al.  Oxygen requirements of the earliest animals , 2014, Proceedings of the National Academy of Sciences.

[35]  M. Kuypers,et al.  Nitrogen isotope effects induced by anammox bacteria , 2013, Proceedings of the National Academy of Sciences.

[36]  A. Knoll,et al.  Oxygen, ecology, and the Cambrian radiation of animals , 2013, Proceedings of the National Academy of Sciences.

[37]  M. Thirlwall,et al.  Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China , 2013 .

[38]  H. Strauss,et al.  High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran–Cambrian transition , 2013 .

[39]  Xi Chen,et al.  Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section, South China , 2013 .

[40]  E. Galbraith,et al.  Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records , 2013 .

[41]  A. Anbar,et al.  Ocean oxygenation in the wake of the Marinoan glaciation , 2012, Nature.

[42]  R. Robinson,et al.  Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+ , 2012, Proceedings of the National Academy of Sciences.

[43]  Xiaoying Shi,et al.  The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform , 2012 .

[44]  M. Lomas,et al.  Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea , 2011 .

[45]  A. Bekker,et al.  The evolution of the marine phosphate reservoir , 2010, Nature.

[46]  A. Maloof,et al.  Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian–Tommotian boundary δ13C shift, Morocco , 2010 .

[47]  Joe McCarthy,et al.  An integrated approach , 2001 .

[48]  N. Butterfield,et al.  Oxygen, animals and oceanic ventilation: an alternative view , 2009, Geobiology.

[49]  N. Butterfield,et al.  Sophisticated particle-feeding in a large Early Cambrian crustacean , 2008, Nature.

[50]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[51]  H. Strauss,et al.  Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China , 2007 .

[52]  H. Strauss,et al.  From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China , 2007 .

[53]  Z. Maoyan,et al.  Organic Carbon Isotopic Evolution during the Ediacaran‐Cambrian Transition Interval in Eastern Guizhou, South China: Paleoenvironmental and Stratigraphic Implications , 2007 .

[54]  C. Junium,et al.  Nitrogen cycling during the Cretaceous, Cenomanian‐Turonian Oceanic Anoxic Event II , 2007 .

[55]  C. Marshall Explaining the Cambrian "Explosion" of Animals , 2006 .

[56]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[57]  Stefan Schouten,et al.  N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events , 2004 .

[58]  Jason Raymond,et al.  The natural history of nitrogen fixation. , 2004, Molecular biology and evolution.

[59]  Maoyan Zhu,et al.  Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach , 2003 .

[60]  Jian Wang,et al.  History of Neoproterozoic rift basins in South China: implications for Rodinia break-up , 2003 .

[61]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[62]  S. Westrop The Ecology of the Cambrian Radiation , 2001 .

[63]  J. Gehling Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks , 1999 .

[64]  P. Van Cappellen,et al.  Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity , 1996, Science.

[65]  Ellery D. Ingall,et al.  Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus , 1994 .

[66]  S. Bengtson,et al.  Predatorial Borings in Late Precambrian Mineralized Exoskeletons , 1992, Science.

[67]  Debbie Glauert An alternative view. , 1988, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[68]  M. Bizzarro,et al.  Reorganisation of Earth’s biogeochemical cycles briefly oxygenated the oceans 520 Myr ago , 2017 .

[69]  A. Gamper Global trends in nutrient dynamics during the Ediacaran-Cambrian period as revealed by nitrogen and carbon isotope trends , 2014 .

[70]  M. Voss,et al.  Performance evaluation of nitrogen isotope ratio determination in marine and lacustrine sediments: An inter-laboratory comparison , 2010 .

[71]  E. Litchman Resource Competition and the Ecological Success of Phytoplankton , 2007 .

[72]  Paul G. Falkowski,et al.  Evolution of primary producers in the sea , 2007 .

[73]  A. Zhuravlev Biota diversity and structure during the Neoproterozoic-Ordovician transition , 2001 .

[74]  N. Naganathan,et al.  An Inter-laboratory Comparison , 1974 .